восстановительная реакция в которой гидридион Н~ выступает в качестве восстановителя а водород воды в ка.



Работа добавлена на сайт TXTRef.ru: 2019-12-03

4. Бинарные соединения водорода. Приведите примеры кислотных, основных и амфотерных гидридов. Продемонстрируйте их свойства на примере реакций с водой.

Соединения водорода с металлами называются гидридами. Гидриды щелочных и щелочноземельных металлов представляют собой соли, т.е. химическая связь между металлом и водородом в них ионная. Это кристаллы белого цвета. Все они нестойки и при нагревании разлагаются на металл и водород. При действии на них воды протекает окислительно-восстановительная реакция, в которой гидрид-ион Нˉ выступает в качестве восстановителя, а водород воды — в качестве окислителя: Нˉ = Н + еˉ; Н2О + еˉ =  Н + ОН+

В результате реакции образуются водород и основание. Например, гидрид кальция реагирует с водой согласно уравнению: CaH2+2H2O = 2H2↑+Ca(OH)2

Эта реакция используется для определения следов влаги и для их удаления.

Кроме солеобразных известны металлообразные и полимерные гидриды. По характеру химической связи в металлообразных гидридах последние близки к металлам. Они обладают значительной электрической проводимостью и металлическим блеском, но очень хрупки. К ним относятся гидриды титана, ванадия, хрома. В полимерных гидридах (например, в гидридах цинка и алюминия) атомы металла связаны друг с другом водородными «мостиками», подобно тому, как это имеет место в молекулах бороводородов (стр. 612).

5. Общая характеристика элементов VIIA. Положение в периодической системе, строение и размер атомов, физические и химические (окислительно-восстановительные) свойства простых веществ. Нахождение в природе. Получение.

   Входящие в главную подгруппу VII группы элементы фтор (Fluorum), хлор (Chlorum), бром (Bromum), иод (Jodum) и астат
(Astatine), называются галогенами. Это название, которое
буквально означает «солерождающие», элементы получили за способность взаимодействовать с металлами с образованием типичных солей, например хлорида натрия NaCl. .

  Во внешнем электронном слое атомы галогенов содержат семь
электронов — два на s- и пять на р-орбиталях (пs2пр5). Галогены
обладают. значительным сродством к электрону (табл. 23) – их атомы легко присоединяют электрон, образуя однозарядные отрицательные ионы, обладающие электронной структурой соответствующего благородного газа (пs2пр6). Склонность к присоединению электронов характеризует галогены как типичные неметаллы.
Аналогичное строение наружного электронного слоя обусловливает
большое сходство галогенов друг с другом, проявляющееся как в
их химических свойствах, так и в типах и свойствах образуемых
ими соединений. Но, как показывает сопоставление свойств галогенов, между ними имеются и существенные различия.

С повышением порядкового номера элементов в ряду F—At увеличиваются радиусы атомов, уменьшается электроотрицательность, ослабевают неметаллические свойства и окислительная способность элементов.

В отличие от других галогенов, фтор в своих соединениях

всегда находится в степени окисленности —1, поскольку среди

всех элементов он обладает самой высокой электроотрицательностью. Остальные галогены проявляют различные степени окисленности от —1 до +7.

3а исключением некоторых оксидов, которые будут рассмотрены ниже, все соединения галогенов соответствуют нечетным степеням окисленности. Такая закономерность обусловлена возможностью последовательного возбуждения спаренных электронов в атомах С1, Вг, I и At на d-подуровень, что приводит к увеличению. Все галогены обладают очень резким запахом. Вдыхание их даже в небольших количествах вызывает сильное раздражение дыхательных путей и воспаление слизистых оболочек. Более значительные количества галогенов могут вызвать тяжелое отравление, числа электронов, принимающих участие в образовании ковалентных связей, до 3, 8 или 7

Галогены, вследствие их большой химической активности, находятся в природе исключительно в связанном состоянии —главным образом в виде солей галогеноводородных кислот.

Фтор встречается в природе чаще всего в виде минерала плавикового шпата CaF2, получившего это название потому, что его прибавление к железным рудам приводит к образованию легко плавких шлаков при выплавке чугуна. Фтор содержится также в минералах криолите Na3AlF6 к фторапатите Ca5F(PO4)3.

Важнейшим природным соединением хлора является хлорид натрия (поваренная соль) NaCl, который служит основным сырьем для получения других соединений хлора. Главная масса хлорида натрия находится в воде морей и океанов. Воды многих озер также содержат значительное количество NaCl—таковы, например, в России озера Эльтон и Баскунчак. Хлорид натрия встречается также и в твердом виде, образуя местами в земной коре мощные пласты так называемой каменной соли, В природе распространены и другие соединении хлора, например хлорид калия в виде минералов карналлита KCl*MgCl2*6H2O и сильвина KCl.

Хлор под давлением около 0,6 МПа уже при комнатной температуре превращается в жидкость. Сжиженный хлор обычно хранят и транспортируют в стальных баллонах или цистернах.

Подобно хлору бром находится в природе преимущественно в виде солей калия, натрия и магния. Бромиды металлов содержатся в морской воде, в воде которых озер и в подземных рассолах. В нашей стране содержание брома в подземных буровых водах, имеющих промышленное значение, составляет от 170 до 700 мг/л.

Соединения йода также имеются в морской воде, но в столь малых количествах, что непосредственное выделение их из воды очень затруднительно. Однако существуют некоторые водоросли, которые накапливают иод в своих тканях. Зола этих водорослей служит сырьем для получения иода. Значительные количества иода (от 10 до 50 мг/л) содержатся в подземных буровых водах. Иод встречается также в виде солей калия — иодата КIО3 и периодата КIО4, сопутствующих залежам нитрата натрия (селитры) в Чили и Боливии.

Иод при комнатной температуре представляет собой темно-фиолетовые кристаллы со слабым блеском. При нагревании под атмосферным давлением он сублимируется (возгоняется), превращаясь в пары фиолетового цвета; при охлаждении пары иода кристаллизуются, минуя жидкое состояние. Этим пользуются на практике для очистки, иода от нелетучих примесей

6. Соединения галогенов с металлами (ионные и ковалентные) и неметаллами, в частности, с углеродом (ПВХ. фотопласты)

Соли фтороводорода называются фторидами. Большинство их малорастворимы в воде; хорошо растворимы лишь фториды Na, К, Al, Sn и Аg. Все соли плавиковой кислоты ядовиты.

Замечательным свойством фтороводорода и плавиковой кислоты является их способность взаимодействовать с диоксидом кремния SiO2, входящим в состав стекла; в результате образуется газообразный фторид кремния SiF4:

SiO2 + 4HF = SiF4↑ + 2H2O

В растворе плавиковой кислоты выделения фторида кремния не происходит, так как он взаимодействует с молекулами HF с образованием хорошо растворимой комплексной гексафторокремниевой (кремнефтороводородной) кислоты:

SiF4 + 2HF = H2[SiF6]

Соляная кислота—одна из важнейших кислот в химической практике. Ежегодное мировое производство соляной кислоты исчисляется миллионами тонн, Широкое применение находят также многие её соли. Отметим важнейшие из хлоридов.

Хлорид натрия NaCl, или поваренная соль, служит сырьем для получения хлора, соляной кислоты, едкого натра и карбоната натрия (соды), применяется в красильном деле, в мыловарении и во многих других производствах. Он служит также приправой к пище и применяется в качестве средства, предохраняющего пищевые продукты от порчи.

Хорид калия KCI в больших количествах потребляется сельским хозяйством в качестве удобрения.

Хлорид кальция CaCl2*6H2O  употребляется для приготовления охлаждающих смесей. Безводный СаСl широко применяют в лабораторной практике для осушения газов и обезвоживания жидких органических веществ,

Хлорид ртути (II) HgCl2 или сулема, очень сильный яд. Разбавленные растворы сулемы (1:1000) используются в медицине как сильнодействующее дезинфицирующее средство (см. также стр. 607).

Хлорид серебра AgCl — наименее растворимая соль соляной Кислоты. Образование осадка AgCl при взаимодействии ионов Clˉ с ионами Ag+ служит характерной реакцией иа хлорид-ионы. Хлорид серебра применяют в фотографической промышленности при изготовлении светочувствительных материалов.

Соли бромоводорода и иодоводорода называются соответствен
но бромидами и иодидами. Растворимость бромидов и
иодидов в большинстве случаев подобна растворимости соответствующих хлоридов.

Растворы бромидов натрия и калия под химически неправильным названием «бром»  применяются в медицине как успокаивающее средство при расстройствах нервной системы. Бромид серебра в больших количествах идет на изготовление фотоматериалов. Иодид калия применяют в медицине — в частности, при заболеваниях эндокринной системы.

7. Хлор. Строение атома, получение и применение хлора. Химические свойства хлора. Хлороводород, хлориды. Хлориды в природе.

Входящие в главную подгруппу VII группы элементы фтор (Fluorum), хлор (Chlorum), бром (Bromum), иод (Jodum) и астат (Astatine), называются галогенами. Это название, которое буквально означает «солерождающие», элементы получили за способность взаимодействовать с металлами с образованием типичных солей, например хлорида натрия NaCl. .

  Во внешнем электронном слое атомы галогенов содержат семь
электронов — два на s- и пять на р-орбиталях (пs2пр5). Галогены
обладают. значительным сродством к электрону (табл. 23) – их атомы легко присоединяют электрон, образуя однозарядные отрицательные ионы, обладающие электронной структурой соответствующего благородного газа (пs2пр6). Склонность к присоединению электронов характеризует галогены как типичные неметаллы.
Аналогичное строение наружного электронного слоя обусловливает
большое сходство галогенов друг с другом, проявляющееся как в
их химических свойствах, так и в типах и свойствах образуемых
ими соединений. Но, как показывает сопоставление свойств галогенов, между ними имеются и существенные различия.

Важнейшим природным соединением хлора является хлорид натрия (поваренная соль) NaCl, который служит основным сырьем для получения других соединений хлора. Главная масса хлорида натрия находится в воде морей и океанов. Воды многих озер также содержат значительное количество NaCl—таковы, например, в России озера Эльтон и Баскунчак. Хлорид натрия встречается также и в твердом виде, образуя местами в земной коре мощные пласты так называемой каменной соли, В природе распространены и другие соединении хлора, например хлорид калия в виде минералов карналлита KCl*MgCl2*6H2O и сильвина KCl.

Хлор под давлением около 0,6 МПа уже при комнатной температуре превращается в жидкость. Сжиженный хлор обычно хранят и транспортируют в стальных баллонах или цистернах.

При пропускании хлора в охлажденную до О°С воду из раствора выделяются зеленовато-желтые кристаллы клатратного соединения Cl2*8H20. Особенно быстро и с выделением большого количества, теплоты протекают реакции соединения галогенов с металлами. Так, расплавленный металлический натрий а атмосфере хлора сгорает с ослепительной вспышкой, а на стенках сосуда появляется белый налет хлорида натрия:

2Nа + С12 = 2NaCl

Медь, железо, олово и многие другие металлы сгорают в хлоре, образуя соответствующие соли.

Свободный хлор тоже проявляет очень высокую химическую
активность, хотя и меньшую, чей фтор. Он непосредственно взаимодействует со всеми простыми веществами, зa исключением кислорода, азота и благородных газов. Такие неметаллы, как фосфор, мышьяк, сурьма и кремний, уже при низкой температуре реагируют с хлором; при этом выделяется большое количество теплоты. Энергично протекает взаимодействие хлора с активными металлами — натрием, калием, магнием и др. •

При комнатной температуре без освещения хлор практически
не взаимодействует с водородом, но при нагревании или на ярком
солнечном свету реакция протекает по цепному механизму (см. § 62)co взрывом.

Хлор получают в настоящее время в больших количествах путем, электролиза водных растворов хлоридов натрия или калия. Хлор выделяется у анода; а у катода образуется •соответственно
гидроксид натрия или калия (см. § 197).

В лабораториях хлор получают действие различных окислителей на кислоту. Напомним, например, известный из
школьного курса лабораторный способ получения хлора действием
диоксиде марганца на соляную кислоту:

MnO2 + 4HCl = MnCl2 + Cl2↑ + 2H2O

В ионно-молекулярной форме эта реакция выразится уравнением: МnО2 + 2Сlˉ + 4Н+ = Mn2+ + Сl2 + 2H2O

из которого видно, что здесь происходит окисление ионов С1ˉ на атомы хлора (образующие затем молекулы Cl2) и восстановление марганца, входящего в состав MnO2, до степени окисленности +2 (ноны Мп2+). При помощи этой реакции хлор был впервые получен К. В. Шееле (Швеция) в 1774 г.

Аналогично можно получить хлор из соляной кислоты, действуя на нее такими, окислителями, как РbО2, КСlО2, КМnО2.

Хлор служит для приготовления многочисленных неорганических и органических соединений. Его применяют в производстве соляной кислоты, хлорной извести, гипохлоритов и хлоратов и др. Большое количество хлора используется для отбелки тканей и целлюлозы, идущей на изготовление бумаги. Хлор применяют также для стерилизации питьевой воды и обеззараживания сточных вод. В цветной металлургии его используют для хлорирования руд, которое является одной из стадий получения некоторых металлов.

Особенно большое значение приобрели зa последнее время различные хлорорганическне продукты. Хлорсодержащие органические растворители - например, дихлорэтан, четыреххлористый
углерод - широко применяются для экстракции жиров и обезжиривания металлов. Некоторые хлорорганические продукты служат эффективными средствами борьбы с вредителями сельскохозяйственных культур. Но основе хлорорганических продуктов изготовляют различные пластические массы, синтетические волокна, каучуки, заменители кожи (павинол). С развитием техники область применения хлорорганических продуктов расширяется, это ведет к непрерывному увеличению производства хлора.

Широкое использование хлора в различных отраслях народного хозяйства, а также масштабы его производства и потребления позволяют отнести хлор, наряду с серной кислотой, аммиаком и содой, к числу важнейших продуктов, выпускаемых химической промышленностью.

Подобно другим сильным кислотам, НСl энергично взаимодействует со многими металлами и оксидами металлов. Соли ее называются хлоридами. Большинство их хорошо растворимы в воде, Малорастворимы AgCl, PbCl2, CuCI, Hg2Cl2.

Соляная кислота—одна из важнейших кислот в химической практике. Ежегодное мировое производство соляной кислоты исчисляется миллионами тонн. Широкое применение находят также многие её соли. Отметим важнейшие из хлоридов.

Хлорид натрия NaCl, или поваренная соль, служит сырьем для получении хлора, соляной кислоты, едкого натра и карбоната натрия (соды), применяется в красильном деле, в мыловарении и во многих других производствах. Он служит также приправой к пище и применяется в качестве средства, предохраняющего пищевые продукты от порчи.

Хлорид калия KCI в больших количествах потребляется сельским хозяйством в качестве удобрения.

8. Общая характеристика элементов VIA группы. Положение в Периодической системе, строение и

размер атомов, физические и химические (окислительно-восстановительные) свойства простых

веществ.

К главной подгруппе шестой группы относятся кислород, сера, селен, теллур и полоний. Полоний -

радиоактивный металл, известны как природные, так и искусственно полученные его изотопы. Во

внешней электронной оболочке атомы рассматриваемых элементов содержат шесть электронов - два

на s-орбитали и четыре на р-орбитали.

Атом кислорода отличается от других элементов подгруппы отсутствием d-подуровня во внешнем электронном слое. Такая электронная структура обусловливает большие затраты на распаривание его

электронов, не компенсируемые энергией образования новых ковалентных связей. Поэтому - ковалентность кислорода равна 2. В некоторых случаях атом кислорода может образовывать еще и

донорно-акцепторные связи. У серы и у остальных элементов подгруппы число неспаренных электронов может быть увеличено путем перевода s- и р- электронов на d-подуровень внешнего слоя. В

связи с этим указанные элементы могут проявлять валентность 2, 4 и 6. Все элементы данной подгруппы, кроме полония - неметаллы. В своих соединениях они проявляют как отрицательную, гак и положительную степени окисления: в соединениях с металлами и водородом -2, в соединениях с неметаллами, например, с кислородом +4 или +6. Исключение при этом составляет сам

кислород. По величине электроотрицательности он уступает только фтору, поэтому только в

соединении с этим элементом ОF2 его степень окисления положительна и равна +2. В соединениях со

всеми другими элементами степень окисления кислорода равна -2, в пероксиде водорода и его

производных она равна -1. В ряду О - Тe понижается окислительная активность, усиливаются восстановительные свойства

9. Кислород. Нахождение в природе, получение и применение. Озон. Озоновый щит.

Кислород—самый распространенный элемент земной коры. В свободном состоянии он находится в атмосферном воздухе, в связанном виде входит в состав воды, минералов, горных пород и всех веществ, из которых построены организмы растений и животных. Массовая доля кислорода в земной коре составляет около 47 %.

Природный кислород состоит из трех стабильных изотопов: 16O (99,76 % ), 17O (0,04 % ) и 18О (0,2 % ).

Атмосферный воздух представляет собой смесь многих газов. Кроме кислорода и азота. образующих основную массу воздуха,

В состав его входят в небольшом количестве благородные газы,  диоксид углерода и водные пары. Помимо перечисленных газов, в воздухе содержится еще большее или меньшее количество пыли и некоторые случайные примеси. Кислород, азот и благородные газы считаются постоянными составными частями воздуха, так как их содержание в воздухе практически повсюду одинаково. Содержание же диоксида углерода, водяных паров и пыли может измениться в зависимости от условий.

Диоксид углерода образуется в природе при горении дерева и угля, дыхании животных, гниении. Особенно много CO2 как продукта сжигания огромных количеств топлива поступает в атмосферу в больших промышленных центрах.

В некоторых местах земного шара СО2 выделяется в воздух вследствие вулканической деятельности, а также из подземных источников. Несмотря па непрерывное поступление диоксида углерода в атмосферу, содержание его в воздухе довольно постоянно и составляет в среднем около 0,03% (об.). Это объясняется поглощением диоксида углерода растениями, а также его растворением в воде.

Водяные пары могут находиться в воздухе в различных количествах. Содержание их колеблется от долей процента до нескольких процентов и зависит от местных условий и от температуры. Пыль, находящаяся в воздухе, состоит главным образом из мельчайших частиц минеральных веществ, образующих земную кору частичек угля, пыльцы растений, а также  различных бактерий. Количество пыли в воздухе очень изменчиво: зимой ее меньше, летом больше. После дождя воздух становится чище, так как капли дождя увлекают с собой пыль.

Наконец, к случайным примесям воздуха относятся такие вещества, как сероводород и аммиак, выделяющиеся при гниении органических остатков; диоксид серы SO2, получающийся при обжиге сернистых руд или при горении угля, содержащего серу; оксиды азота, образующиеся при электрических разрядах в атмосфере, и т. п. Эти примеси обычно встречаются в ничтожных количества и постоянно удаляются из воздуха, растворяясь в дождевой воде.

Кислород был впервые получен в чистом виде К. В. Шееле в 1772 г., а затем в 1774 г.

Д. Пристли (Англия), который выделил его из оксида ртути (II), Однако, Пристли не знал, что полученный им газ входит в состав воздуха. Только спустя несколько лет Лавуазье, подробно изучивший свойства этого газа, установил, что он является составной частью воздуха.

В настоящее время в промышленности кислород получают из воздуха (см. § 123). В лабораториях пользуются кислородом промышленного производства, поставляемым в стальных баллонах под давлением около 15 МПа. Важнейший лабораторным способом его получения служит электролиз водных растворов щелочей. Небольшие количества кислорода можно также получать взаимодействием раствора перманганата калия с подкисленным раствором пероксида водорода (см. стр. 337) или термическим разложением некоторых кислородосодержащих веществ, например перманганата калия:

2KMnO4 = K2MnO4 + MnO2 + O2↑

Кислород играет исключительно важную роль в природе. При участии кислорода совершается один из важнейших жизненных процессов — дыхание. Важное значение имеет и другой процесс,
в котором, участвует кислород - тление и гниение погибших животных и растений, при этом сложные органические вещества превращаются в более простые (и конечном результате в СО2, воду и азот) а последние вновь поступают в общий круговорот веществ в природе.

Применение кислорода весьма многообразно. Его применяют для интенсификации химических процессов, во многих производствах (например, в производстве серной и азотной кислот, в доменном процессе). Кислородом пользуются для получения высоких температур, для чего различные горючие газы (водород, ацетилен) сжигают в специальных горстках. Кислород используют в медицине при затрудненном дыхании.

При пропускании электрических искр через кислород или воздух появляется характерный запах, причиной которого является образование нового вещества — озона. Озон можно получить из совершенно чистого сухого кислорода; отсюда следует, что он состоит только из кислорода и представляет собой его аллотропическое видоизменение.

Молекулярная масса озона равна 48. Атомная же масса кислорода равна 16*; следовательно, молекула озона состоит из трех атомов кислорода.

Для получения озона пользуются действием тихих электрических разрядов на кислород. Приборы, служащие для этой цели, называются озонаторами.

Озон ядовит. Предельно допустимым является его содержание
в воздухе, равное 10ˉ5 %, При этой концентрации хорошо ощущается его запах. В приземном слое атмосферы содержание озона
обычно лежит в пределах 10ˉ7-10ˉ6%; он образуется в атмосфере при электрических разрядах.

10. Оксиды неметаллов. Классификация. Получение и применение.

Все кислотные оксиды - вещества с ковалентной связью.
К кислотным оксидам относятся:
а) оксиды элементов, образующих неметаллы,
б) некоторые оксиды элементов, образующих металлы, если металлы в этих оксидах находятся в высших степенях окисления, например, CrO3, Mn2O7.
Среди кислотных оксидов есть вещества, представляющие собой при комнатной температуре газы (например: СО2, N2O3, SO2, SeO2), жидкости (например, Mn2O7) и твердые вещества (например: B2O3, SiO2, N2O5, P4O6, P4O10, SO3, I2O5, CrO3). Большинство кислотных оксидов - молекулярные вещества (исключения составляют B2O3, SiO2, твердый SO3, CrO3 и некоторые другие; существуют и немолекулярные модификации P2O5). Но и немолекулярные кислотные оксиды при переходе в газообразное состояние становятся молекулярными.
Для кислотных оксидов характерны следующие химические свойства.
1) Все кислотные оксиды реагируют с сильными основаниями, как с твердыми:
CO2 + Ca(OH)2 = CaCO3 + H2O
SiO2 + 2KOH = K2SiO3 + H2O (при нагревании),
так и с растворами щелочей
SO3 + 2OH
= SO42 + H2O, N2O5 + 2OH = 2NO3 + H2O,
SO3 + 2NaOHр = Na2SO4р + H2O, N2O5 + 2KOHр = 2KNO3р + H2O.
Причина протекания реакций с твердыми гидроксидами та же, что с оксидами.
Наиболее активные кислотные оксиды (SO3, CrO3, N2O5, Cl2O7) могут реагировать и с нерастворимыми (слабыми) основаниями.
2) Кислотные оксиды реагируют с основными оксидами:
CO2 + CaO = CaCO3
P4O10 + 6FeO = 2Fe3(PO4)2 (при нагревании)
3) Многие кислотные оксиды реагируют с водой.
N2O3 + H2O = 2HNO2 SO2 + H2O = H2SO3 (более правильная запись формулы сернистой кислоты -SO2 .H2O
N2O5 + H2O = 2HNO3 SO3 + H2O = H2SO4
Многие кислотные оксиды могут быть получены путем окисления кислородом (сжигания в кислороде или на воздухе) соответствующих простых веществ (Cгр, S8, P4, Pкр, B, Se, но не N2 и не галогены):
C + O2 = CO2,
S8 + 8O2 = 8SO2,
или при разложении соответствующих кислот:
H2SO4 = SO3 + H2O (при сильном нагревании),
H2SiO3 = SiO2 + H2O (при высушивании на воздухе),
H2CO3 = CO2 + H2O (при комнатной температуре в растворе),
H2SO3 = SO2 + H2O (при комнатной температуре в растворе).
Неустойчивость угольной и сернистой кислот позволяет получать CO2 и SO2 при действии сильных кислот на карбонаты Na2CO3 + 2HClp = 2NaClp + CO2
+H2O
(реакция протекает как в растворе, так и с твердым Na2CO3), и сульфиты
K2SO3тв + H2SO4конц = K2SO4 + SO2
+ H2O (если воды много, диоксид серы в виде газа не выделяется).

11. Оксиды металлов. Кислотно-основные свойства. Получение и применение.

Все основные оксиды – твердые немолекулярные вещества с ионной связью.
К основным оксидам относятся:
а) оксиды щелочных и щелочноземельных элементов,
б) оксиды некоторых других элементов, образующих металлы, в низших степенях окисления, например: СrO, MnO, FeO, Ag2O и др.

В их состав входят однозарядные, двухзарядные (очень редко трехзарядные катионы) и оксид-ионы. Наиболее характерные химические свойства основных оксидов как раз и связаны с присутствием в них двухзарядных оксид-ионов (очень сильных частиц-оснований). Химическая активность основных оксидов зависит прежде всего от прочности ионной связи в их кристаллах.
1) Все основные оксиды реагируют с растворами сильных кислот:
Li2O + 2H3O
= 2Li + 3H2O, NiO + 2H3O = Ni2 +3H2O,
Li2O + 2HClp = 2LiClp + H2O, NiO + H2SO4p = NiSO4p + H2O.
В первом случае кроме реакции с ионами оксония протекает еще и реакция с водой, но, так как ее скорость значительно меньше, ею можно пренебречь, тем более, что в итоге все равно получаются те же продукты.
Возможность реакции с раствором слабой кислоты определяется как силой кислоты (чем сильнее кислота, тем она активнее), так и прочностью связи в оксиде (чем слабее связь, тем активнее оксид).
2) Оксиды щелочных и щелочноземельных металлов реагируют с водой:
Li2O + H2O = 2Li
+ 2OH BaO + H2O = Ba2 + 2OH
Li2O + H2O = 2LiOHp, BaO + H2O = Ba(OH)2p.
3) Кроме того, основные оксиды реагируют с кислотными оксидами:
BaO + CO2 = BaCO3,
FeO + SO3 = FeSO4,
Na2O + N2O5 = 2NaNO3.
В зависимости от химической активности тех и других оксидов реакции могут протекать при обычной температуре или при нагревании.
В чем причина протекания таких реакций? Рассмотрим реакцию образования BaCO3 из BaO и CO2. Реакция протекает самопроизвольно, а энтропия в этой реакции уменьшается (из двух веществ, твердого и газообразного, образуется одно кристаллическое вещество), следовательно, реакция экзотермическая. В экзотермических реакциях энергия образующихся связей больше, чем энергия рвущихся, следовательно, энергия связей в BaCO3 больше, чем в исходных BaO и CO2. И в исходных веществах, и в продуктах реакции два типа химической связи: ионная и ковалентная. Энергия ионной связи (энергия решетки) в BaO несколько больше, чем в BaCO3 (размер карбонатного иона больше, чем оксид-иона), следовательно, энергия системы O2- + CO2 больше, чем энергия CO32-

Иными словами, ион CO32- более устойчив, чем отдельно взятые ион O2- и молекула CO2. А большая устойчивость карбонат-иона (его меньшая внутренняя энергия) связана с распределением заряда этого иона (– 2 е) по трем атомам кислорода карбонат-иона вместо одного в оксид-ионе

4) Многие основные оксиды могут быть восстановлены до металла более активным металлом или неметаллом-восстановителем:
MnO + Ca = Mn + CaO (при нагревании),
FeO + H2 = Fe + H2O (при нагревании).
Возможность протекания таких реакций зависит не только от активности восстановителя, но и от прочности связей в исходном и образующемся оксиде.
Общим способом получения почти всех основных оксидов является окисление соответствующего металла кислородом. Таким способом не могут быть получены оксиды натрия, калия и некоторых других очень активных металлов (в этих условиях они образуют пероксиды и более сложные соединения), а также золота, серебра, платины и других очень малоактивных металлов (эти металлы не реагируют с кислородом). Основные оксиды могут быть получены термическим разложением соответствующих гидроксидов, а также некоторых солей (например, карбонатов). Так, оксид магния может быть получен всеми тремя способами:
2Mg + O2 = 2MgO,
Mg(OH)2 = MgO + H2O,
MgCO3 = MgO + CO2.

12. Физические (агрегатное состояние) и химические свойства высших оксидов элементов 2 периода и 3 периода.

Свойства высших оксидов (т.е. оксидов, в состав которых входит элемент данной группы с высшей степенью окисления) в периодах слева направо постепенно изменяются от основных к кислотным. В группах сверху вниз кислотные свойства высших оксидов постепенно ослабевают. Об этом можно судить по свойствам кислот, соответствующих этим оксидам. Возрастание кислотных свойств высших оксидов соответствующих элементов в периодах слева направо объясняется постепенным возрастанием положительного заряда ионов этих элементов. В главных подгруппах периодической системы химических элементов в направлении сверху вниз кислотные свойства высших оксидов неметаллов уменьшаются.. Общие формулы соединений по группам

I       II       III    IV     

RH RH2 RH3 RH4

13. Пероксиды. Кислотные и редокс свойства, получение и применение пероксида водорода. Взаимодействие пероксидов н надпероксидов с углекислым газом.

Пероксид водорода Н2О2. Пероксид (перекись) водорода представляет собой бесцветную сиропообразную жидкость плотностью 1,45 г/cм³. Затвердевающую при -0,48°С. Это очень непрочное вещество, Способное разлагаться со взрывом на воду и кислород, причем выделяется большое количество теплоты:

2Н2О2 (ж) = 2 Н2О(ж) +О2 +197,5 КДж

Водные растворы пероксида водорода более устойчивы; в прохладном месте они могут сохраняться довольно долго. Пергидроль — раствор, который поступает в продажу, — содержит 30% Н2О2. В нем, а также в высококонцентрированных растворах пероксида водорода содержатся стабилизирующие добавки.

Разложение пероксида водорода ускоряется катализаторами. Если, например, в раствор пероксида водорода бросить немного диоксида марганца MnO2, то происходит бурная реакция и выделяется кислород. К катализаторам, способствующим разложению пероксида водорода, принадлежат медь, железо, марганец, а также ионы этих металлов. Уже следы этих металлов могут вызвать распад H2О2.

Пероксид водорода образуется в качестве промежуточного продукта при горении водорода, но ввиду высокой температуры водородного пламени тотчас же разлагается на воду и кислород. Однако если направить водородное пламя на кусок льда, то в образующейся воде можно обнаружить следы пероксида водорода.

Пероксид водорода получается также при действии атомарного водорода на кислород.

В промышленности пероксид водорода получают в основном электрохимическими методами, например анодным окислением растворов серной кислоты или гидросульфата аммония с последующим гидролизом образующейся при этом пероксодвусерной кислоты Н2S2O3. Происходящие при этом процессы можно изобразить схемой:

2H2SO4 = H2S2O3 + 2H+ + 2eˉ

H2S2O3 + 2H3O = 2H2SO4 + H2O2

В пероксиде водорода атомы водорода ковалентно связаны с атомами кислорода, между которыми также осуществляется простая связь. Строение пероксида водорода можно выразить следующей структурной формулой: Н−О−О−Н.

Молекулы H2O2 обладают значительной полярностью, (µ=2,13d), что является следствием их пространственной структуры (рис. 106).

В молекуле пероксида водорода связи между атомами водорода и кислорода полярны (вследствие смещения общих электронов в сторону кислорода). Поэтому в водном растворе под влиянием полярных молекул воды пероксид водорода может отщеплять ионы водорода, т. е. он обладает кислотньми свойствами. Пероксид водорода — очень слабая, двухосновная кислота (К1=2,6*10^(-12)): в водном растворе он распадается, хотя и в незначительной степени на ионы:

Н2О2↔Н+ + HO2ˉ

Диссоциация по второй ступени

HO2ˉ↔H+ + O2^(2-)

практически не протекает. Она подавляется присутcтвием воды вещества, диссоциирующего с образованием ионов водорода в большей степени, чем пероксид водорода. Однако при связывании ионов водорода (например, при введении в раствор щелочи) диссоциация по второй ступени происходит.

С некоторыми основаниями пероксид водорода реагирует непосредственно, образуя соли. Taк, при действии пероксида водорода на водный раствор гидроксида бария выпадает осадок бариевой соли пероксида водорода:

Ba(OH)2 + H2O2 = BaO2↓ + 2H2O

Соли пероксида водорода называются пероксидами или перекисями. Они состоят из положительно заряженных ионов металла и отрицательно заряженных ионов О2^(2-).

Степень окисленности кислорода в пероксиде водорода равна -1, т. е. имеет промежуточное значение между степенью окисленности кислорода в воде (—2) и в молекулярном кислороде (0). Поэтому пероксид водорода обладает свойствами как окислителя, так и восстановителя, т. е. проявляет окислительно-восстановительную двойственность. Все же для него более характерны окислительные свойства, так как стандартный потенциал электрохимической системы H2O2 + 2H+ + 2eˉ = 2H2O, в которой Н2О2 выступает как окислитель, равен 1,776В, в то время как стандартный потенциал электрохимической системы О2 + 2Н+ + 2еˉ = Н2О2, в которой пероксид водорода, является восстановителем, равен 0,682 В. Иначе говоря, пероксид водорода может окислять вещества, Е которых не превышает 1,776 В, а восстанавливать только те, Е которых больше 0,682 В. В качестве примеров  реакций, в которых H2O2 служит окислителем, можно привести окисление нитрита калия

КNO2 + H2O2 = KNO3 + H2O

и выделение иода из иодида калия

2KI + H2O2 = I2 + 2KOH

Как пример восстановительной способности пероксида водорода
укажем на реакции взаимодействия Н2О2 с оксидом серебра(1)
Аg2O + H2O2 = 2AgO + H2O + O2↑

а также с раствором перманганата калия в кислей среде:

2КМnО4 + 5Н2О2 + 3H2SO4 = 2MnSO4 + 5O2 + K2SO4 + 8H2O

Если сложить уравнения, отвечающие восстановлению пероксида водорода и его окислению, то получится уравнение самоокисления-самовосстановления пероксида водорода:

H2O2 + 2H+ + 2eˉ = 2H2O

                     H2O2 = O2 + 2H+ + 2eˉ

                    2H2O2 = 2H2O + O2

14. Сера. Получение, свойства и применение серы. Природные источники. Сероводород. Кислотно-основные и окислительно-восстановительные свойства сероводорода. Сера в природе. Получение Серы.

Сера (Sulfur) встречается в природе в различных соединениях соединениях. В Советской Союзе залежи самородной серы находится в Туркмении в пустыне Кара-Кум, в Узбекской ССР, по берегам Волги. За рубежом наиболее крупные месторождения серы находятся в США, Италии и Японии.

Очень распространены соединения серы с различными металлами. Многие из них являются ценными рудами (например, свинцовый блеск PbS, цинковая обманка ZnS, медный блеск Cu2S) и служат источником получения цветных металлов.

Из соединений серы в природе распространены также сульфаты, главным образом, кальцин и магния. Наконец, соединения серы содержатся в организмах растений и животных.

Общее содержание серы в земной коре составляет приблизительно 0,1 %.

Важным источником получения серы служит железный колчедан FеS2, называемый также пиритом, и полиметаллические руды, содержащие сернистые соединения меди, цинка и других цветных металлов. Некоторое количество серы (газовая сера) получают из газов, образующихся при коксовании и газификации угля

При обычных давлениях сера образует хрупкие кристаллы желтого цвета, плавящиеся при 112,8°С; плотность её 2,07 г/см3. Она нерастворима в воде, но довольно хорошо растворяется в сероуглероде бензоле и некоторых других жидкостях. При испарении этих жидкостей сера выделяется из раствора в виде прозрачных желтых кристаллов ромбической системы, имеющих форму октаэдров у которых обычно Часть углов или ребер как бы срезана (рис. 112). Эта модификация серы называется ромбической

Иной формы кристаллы получаются, если медленно охлаждать расплавленную серу и когда она частично затвердевает, слить еще не успевшую застыть жидкость. При этих условиях стенки сосуда оказываются покрытыми изнутри длинными темно-желтыми игольчатыми кристаллами моноклинной системы (рис. 113)

Эта модификация серы называется моноклинной. Она имеет плотность 1.96 г/см3, плавится при Т 119,3°С и устойчива только при температуре выше 96°С. Молекулы серы состоят, из восьми атомов S8 .Из таких же молекул  S8 имеющих кольцевое строение, построены кристаллы ромбической, и моноклинной серы. Таким oбpaзом, различие в свойствах кристаллических модификаций серы обусловлено не различным числом атомов в молекулах (как, например, в молекулах кислорода и озона), а неодинаковой структурой кристаллов.

Интересны изменения, которые претерпевает сера, если медленно нагревать её до кипения. При 112,8°С она плавится, превращаясь в желтую легкоподвижную жидкость. При дальнейшем нагревании жидкость темнеет, приобретая красновато-бурый цвет, и при температуре около 250°С становится настолько вязкой, что не выливается из опрокинутого сосуда. Выше 300°С жидкая сера снова становится подвижной, но цвет её остается таким же темным. Наконец, при 444,6°С Сера закипает, образуя оранжево-желтые пары. При охлаждении те же явления повторяются в обратном порядке.

Описанные изменения имеют следующее объяснение. При температурах превышающих 150—160°С, кольцевые молекулы серы S8 начинают разрываться. Образующиеся цепочки атомов соединяются друг с другом -получаются длинные цепи, вследствие чего вязкость расплава сильно увеличивается. Дальнейшее нагревание приводит к разрыву этих цепей, и вязкость серы вновь снижается. B парах серы с увеличением температуры число атомов в молекуле постепенно уменьшается: S8→S6→S4→S2→S При 800—1400°C пары серы состоят главным образом из молекул S2, при 1700°С —из атомов.

Сера— типичный неметалл. Со многими металлами, например с медью, железом, цинком, сера соединяется непосредственно с выделением большого количества теплоты. Она соединяется также почти со всеми неметаллами, но далеко не так легко и энергично как с металлами.

Сера широко используется в народном хозяйстве. В резиновой промышленности её применяют для превращения каучука в резину: свои ценные свойства каучук приобретает только после смешивания с cepoй и нагревания до определенной температуры. Такой процесс называется вулканизация каучука (стр. 488). Каучук с очень большим содержанием серы называют эбонитом, это хороший электрический изолятор.

В виде серного цвета серу используют для уничтожения некоторых вредителей растений. Она применяется также для приготовления спичек, ультрамарина (синяя краска), сероуглерода и ряда других веществ. В странах, богатых серой, она служит сырьем для получения серной кислоты.

Сероводород. Сульфиды. При высокой температуре сера взаимодействует с водородом, образуя газ сероводород.

Практически сероводород обычно получают действием разбавленных кислот на сернистые металлы, например на сульфид железа

FeS+2HCl = FeCl2 + H2S↑

Сероводород — бесцветный газ с характерным запахом гниющего белка. Он немного тяжелее воздуха, сжижается при -60,3°С и затвердевает при -85,6°С. На воздухе сероводород горит голубоватым пламенем, образуя диоксид серы и воду:

2H2S + 3O2 = 2H2O + 2SO3

Если внести в пламя сероводорода какой-нибудь холодный предмет, например фарфоровую чашку, то температура пламени значительно понижается и сероводород окисляется только до свободной серы, оседающей на чашке в виде желтого налета:

2H2S + O2 = 2H2O +  2S

Сероводород легко воспламеняется, смесь его с воздухом взрывается. Сероводород очень ядовит. Длительное вдыхание воздуха, содержащего этот газ даже в небольших количествах вызывает тяжелое отравление. При 20°С один объем воды растворяет 2,5 объема сероводорода. Раствор сероводорода в вoдe называется сероводородной водой. При стоянии на воздухе, особенно на свету, сероводородная вода скоро становится мутной от выделяющейся серы. Это происходит в результате окисления сероводорода-кислородом воздуха (см. предыдущую реакцию). Раствор сероводорода в воде обладает свойствами кислоты.

Сероводород - слабая двухосновная кислота. Она диссоциирует ступенчато и в основном по первой ступени:

H2S ↔ Н+ + HSˉ   (K1 = 6*10^(-8))

Диссоциация по второй ступени:

HSˉ ↔ H+ +S(2-) (K2 = 10^(-14))

протекает в ничтожно малой степени.

Сероводород сильный восстановитель. При действии сильных окислителей он окисляется до диоксида серы или до серной кислоты; глубина окисления зависит от условий: температуры, рН раствора, концентрации окислителя. Например, реакция с хлором обычно протекает до образования серной кислоты:

H2S + 4Cl2 + 4H2O = H2SO4 + 8HCl

Сероводород встречается в природе в вулканических газах и в водах минеральных источников. Кроме того, он образуется при разложении белков погибших животных и растений, а также при гниении пищевых отбросов.

15.Сульфиды металлов. Распространение в природе. Получение сульфидов. Растворимость в  воде и кислотах на примере сульфидов натрия и меди II.

Средние соли сероводорода называются сульфидами. Их можно получать различными способами, в тои числе непосредственным соединением металлов с серой. Смешав например железные опилки с порошком серы и нагрев смесь с одном месте, можно легко вызвать реакцию железа с серой, которая дальше идет сама и сопровождается выделением большого количества теплоты:

Fe + S  =  FeS+100,4 кДж

Многие сульфиды можно получить, действуя сероводородом на растворимые в воде соли соответствующих металлов. Например, при пропускании сероводорода через раствор какой-нибудь соли меди(II) появляется черный осадок сульфида меди(II)

CuSO4 + H2S = CuS↓+ H2SO4

или и в ионно-молекулярной форме:

Сu(2+)  + H2S = CuS↓ + 2Н+

Несмотря на то, что в ходе реакции получается кислота, CuS выпадает в осадок: сульфид меди не растворяется ни в воде, ни в разбавленных кислотах. Но при действии сероводорода на раствор какой-либо соли железа (II) осадка не получается — сульфид железа (II) FeS нерастворим в воде, но растворяется в кислотах. Это различие обусловлено тем, что произведение растворимости CuS много меньше произведения растворимости FeS.

Некоторые сульфиды растворимы в воде, например, Nа2S и K2S. Понятно, что они не могут быть получены из солей соответствующих металлов действием сероводорода или других сульфидов.

Различиями в растворимости сульфидов пользуются в аналитической химии для последовательного осаждения металлов из растворов их солей.

Сульфиды, как соли очень слабой кислоты, подвергаются гидролизу. Например, Na2S при растворении в йоде почти целиком гидролизуется с образованием кислой соли — гидросульфида натрия

Na2S + H2O ↔ NaHS + NaOH

S^(2-) + H2O ↔ HSˉ + OHˉ

Серебряные и медные предметы чернеют в воздухе и в воде, содержащих сероводород. Это происходит оттого, что они покрываются налетом соответствующего сульфида. При этом окислителем служит кислород, находящийся в воздухе или растворенный в воде:

4Аg + 2H2S + O2 = 2Ag2S + 2H2O

При взбалтывании раствора какого-нибудь сульфида, например сульфида натрия с серой, последняя растворяется в нем, и после выпаривания получается остаток, содержащий, кроме сульфида натрия, также соединения с большим содержанием серы - от Na2S2 до Na2S5. Такие соединения называются полисульфидами или многосернистыми металлами.

Среди сульфидов имеется много соединений временного состава. Например, сульфид железа(II) может иметь состав от FeS1.01 до FeS1.14.

Природные сульфиды составляют основу руд цветных и редких металлов и широко используются в металлургии. Некоторые из них служат также сырьем для получения серной кислоты. В этих же целях используется природный полисульфид - жслезный колчедан (пирит) FeS2. Сульфиды щелочных и щелочноземельных металлов находят применение в химической и в легкой промышленности. Так, Na2S, CaS и BaS применяются в кожельном производстве для удаления волосяного покрова с кож. Сульфиды щелочноземельных металлов, цинка и кадмия служат основой люминофоров. Некоторые сульфиды обладают полупроводниковыми свойствами и применяются в электронной технике технике.

16. Кислотные и окислительно-восстановительные свойства, получение и применение серной и сернистой кислот и их солей (по 1 примеру). «Кислотные дожди»

Сернистая кислота H2SO3 - очень непрочное соединение. Она известна только в водных растворах. При попытках выделить сери истую кислоту она распадается на SO2 и воду. Например, при действии концентрированной серной кислоты на сульфит натрия вместо сернистой кислоты выделяется диоксид серы:

NаSO3 + H2SO4 = Nа2SO4 + SO2↑ + Н2О

Раствор сернистой кислоты необходимо предохранять от доступа воздуха, иначе она, поглощая из воздуха кислород, медленно окисляется в серную кислоту:

2H2SO3 + O2 = 2H2SO4

Сернистая кислота — хороший восстановитель. Например, свободные галогены восстанавливаются ею в галогеноводороды;

H2SO3 + Cl2 + H2O = H2SO4 + 2HCl

H2SO3 + I2 + H2O = H2SO4 + 2HI

Однако при взаимодействии с сильными восстановителями сернистая кислота может играть роль окислителя. Так, реакция ее с сероводородом восновном протекает согласно уравнению:

Н2SO3 + 2H2S = 3S↓ + 3H2O

Будучи двухосновной (К1≈2*10^(-2), K2=6,3*10^(-6)), сернистая кислота образует два ряда солей. Средние ее соли называются сульфитами, кислые — гидросульфитами.

Триоксид серы — ангидрид серной кислоты; последняя образуется при взаимодействии SO3 с водой:

SO3 + H2O = H2SO4 +88 кДж

Безводная H2SO4 бесцветная маслянистая жидкость, кристаллизующаяся при 10,3°С.

При нагревании безводная серная кислота (так называемый моногидрат) отщепляет SО3 который улетучивается. Отщепление идет да тех пор, пока не получится азеотропный раствор. Он содержит 98.3% (масс.) Н2SO4 и 1,7 % (масс) воды. Этот раствор кипит и перегоняется без изменения состава при 338,8°C. Азеотропный раствор в конечном счете получается и при перегонке разбавленной серной кислоты. В этом случае отгоняется преимущественно вода до тех пор, пока концентрация кислоты не достигает 98,3 % (масс).

При растворении серной кислоты в воде образуются гидраты и выделяется очень большое количество теплоты. Поэтому смешивать концентрированную серную кислоту с водой следует с осторожностью. Во избежание разбрызгивания разогретого поверхностного слоя раствора, надо вливать серную кислоту (как более тяжелую) в воду небольшими порциями или тонкой струйкой, ни в коем случае не следует вливать воду в кислоту.

Серная кислота жадно поглощает пары воды и поэтому часто применяется для осушения газов. Способностью поглощать воду объясняется и обугливание многих органических веществ, особенно относящихся к классу углеводов (клетчатка, сахар и др.), при действии на них концентрированной серной кислоты. В состав углеводов водород и кислород входят в таком же отношении, в каком они находятся в воде. Серная кислота отнимает от углеводов водород и кислород, которые образуют воду, а углерод выделяется в виде угля.

Концентрированная серная кислота, особенно горячая, — энергиченый окислитель. Она окисляет HI и НВr (но не HCl) до свободных галогенов, уголь до СО2, серу — до SO2). Указанные реакции выражаются уравнениями:

8HI + H2SO4 = 4I2 + H2S↑ + 4H2O

2HBr + H2SO4 = Br2 + SO2↑ + 2H2O

C + 2H2SO4 = CO2↑ + 2SO2↑ + 2H2O

S + 2H2SO4 = 3SO2↑ + 2H2O

Взаимодействие серной кислоты с металлами протекает различно в зависимости от ее концентрации. Разбавленная серная кислота окисляет своим ионом водорода. Поэтому она взаимодействует только с теми металлами, которые стоят в ряду напряжений до водорода, например:

Zn + H2SO4 = ZnSO4 + H2↑

Однако свинец не растворяется в разбавленной кислоте, поскольку образующаяся соль PbSO4 нерастворима.

Концентрированная серная кислота является окислителем за счет серы(Vl). Оно окисляет металлы, стоящие в ряду напряжений до серебра включительно. Продукты её восстановлении могут быть различными в зависимости от активности металла и от условий (концентрация кислоты, температура). При взаимодействии с малоактивными металлами, например с медью, кислота восстанавливается до SO2:

Сu + 2H2SO4 = CuSO4 +  SO2↑ + H2O

При взаимодействии с более активными металлами продуктами восстановлении могут быть как SO2, так и свободная сера и сероводород. Например, при взаимодействии с цинком могут протекать реакции:

Zn + 2H2SO4 = ZnSO4 + SO2↑ + 2Н20

3Zn +4H2SO4 = 3ZnSO4 + S↓ + 4H2O

4Zn + 5H2SO4 = 4ZnSO4 + H2S↑ + 4H2O

Серная кислота — сильная двухосновная кислота. По первой ступени в растворах невысокой концентраций она диссоциирует практически нацело;

H2SO4↔H+ + HSO4ˉ

Диссоциация по второй ступени

HSO4ˉ ↔ H+ + SO4^(2-)

протекает в меньшей степени. Константа диссоциации серной кислоты по второй ступени выраженная через активности ионов К2 = 10^(-2)

Как кислота двухосновная, серная кислота образует два ряда солей: средние и кислые. Средние соли серной кислоты назваются сульфатами, а кислые - гидросульфатами.

Кислотные дожди атмосферные осадки (в т.ч. дожди), подкисленные(рН 5,6) из за повышенного содержания в воздухе промышленных выбросов, главным образом SO2, NO3, HCI u др. В результате

попадания кислотных дождей в поверхностный слой почвы и водоемы развивается подкисление, что

приводит к деградации экосистем, гибели отдельных вид рыб и других водных организмов. Кислотные

дожди сказываются на плодородии почвы, снижении прироста лесов и их усыхании. Кислотные дожди

особенно характерны для стран Западной и Северной Европы, для США, Канады, промышленных районов

РФ, Украины и др

17. Общая характеристика элементов VA группы. Положение в периодической системе, строение, физические и химические (окнслительно-восстяновительные) свойства простых веществ. Нахождение в природе. Получение азота и фосфора.

К главной подгруппе V группы периодической системы принадлежат азот, фосфор, мышьяк, сурьма и висмут.

Эти элементы, имея пять электронов в  наружном слое атома, характеризуются в целом как неметаллы. Однако способность к присоединению электронов выражена у них значительно слабее, чем у соответствующих элементов VI и VII групп. Благодаря наличию пяти наружных электронов, высшяя положительная окисленность элементов этой подгруппы равна +5, а отрицательная — 3. Вследствие относительно меньшей электроотрицательности связь рассматриваемых элементов с водородом менее полярна, чем связь с водородом элементов VI и VII групп. Поэтому водородные соединения этих элементов не отщепляют в водном растворе ионы водорода и, таким образом, не обладают кислотными свойствами.

Физические и химические свойстве элементов подгруппы азота изменяются с увеличением порядкового номера в той же последовательности, которая наблюдалась в ранее рассмотренных группах, но так как неметаллические свойства выражены у азота слабее, чем. у кислорода и тем более фтора, то ослабление этих свойств при переходе к следующим элементам влечет за собой появление и нарастание металлических свойств. Последние заметны уже у мышьяка, сурьма приблизительно в равной степени обладает теми и другими свойствами, а у висмута металлические свойства преобладают над неметаллическими.

Азот природе. Получение и свойства азота. Большая часть азота находится в природе в свободном состоянии. Свободный азот является главной составной частью воздуха, который содержит 78,2 % (об.) азота. Неорганические соединении азота не встречаются в природе в больших количествах, если не считать натриевую селитру NaNO3, образующую мощные пласты на побережье Тихого океана в Чили. Почва содержит незначительные количества азота, преимущественно в виде солей азотной кислоты. Но в виде сложных органических соединений — белков — азот входит в состав всех живых организмов. Превращения, которым подвергаются белки в клетках растений и животных, составляют основу всех жизненных процессов. Без белка нет жизни, а так как азот является обязательной составной частью белка, то понятно, какую важную роли играет этот элемент в живой природе.

Общее содержание азота в земной  коре (включая гидросферу и атмосферу) составляет 0,04 % (масс).

Получение азота из воздуха сводится в основном к отделению его от кислорода. В промышленности это осуществляется путем испарения жидкого воздуха в специальных установках.

В лабораториях обычно пользуются азотом, поставляемым в баллонах под повышенным давлением или в сосудах Дьюара, Можно получать азот разложением некоторых его соединений, например нитрита аммония NН4NO2, который разлагается с выделением азота при сравнительно небольшом нагревании:

NH4NO2 = N2↑ + 2H2O

Основное применение азот находит в качестве исходного продукта для синтеза аммиака и некоторых других соединений. Кроме того, он применяется для заполнения электрических ламп, для создания инертной среды при промышленном проведении некоторых химических реакций, при перекачке горючих жидкостей.

Фосфор в природе. Получение и свойства фосфора. Фосфор принадлежит к числу довольно распространенных элементов; содержание его в земной коре составляет около 0,1 % (мясс.). Вследствие легкой окисляемости фосфор в свободном состоянии в природе не встречается.

Из природных соединений фосфора самым важным является ортофосфат кальция Ca3(PO4)2, который в виде минерала фосфорита иногда обрпзует большие залежи. В СССР богатейшие месторождения фосфоритов находятся в Южном Казахстане в горах Каратау. Часто встречается также минерал апатит, содержащий, кроме Ca3(PO4)2 еще CaF2 или СaСl2. Огромные залежи апатита были открыты в двадцатых годах нашего столетия на Кольском полуострове. Это месторождение по своим запасам самое большое в мире.

Фосфор, как и азот, необходим для всех живых существ, так как ои входит в состав некоторых белков как растительного, так и животного происхождения. В растениях фосфор содержится главным образом в белках семян, в животных организмах — в белках молока, крови, мозговой к нервной тканей. Кроме того, большое количество фосфора содержится в костях позвоночных животиых в основном в виде соединений 3Cа3(PO4)2*Са(OH)2 и 3Ca3(PO4)2*CaCO3*H2O. В виде кислотного остатка фосфорной кислоты фосфор входит в состав нуклеиновых кислот — сложных органических полимерных соединений, содержащихся во всех живых организмах. Эти кислоты принимают непосредственное участие в процессах передачи наследственных свойств живой клетки.

Сырьем для получения фосфора и его соединений служат фосфориты и апатиты. Природный фосфорит или апатит измельчают, смешивают с песком и углем и накаливают и печах с помощью электрического тока без доступа воздуха.

Чтобы понять происходящую реакцию, представим фосфит кальция как соединение оксида кальция с фосфорным ангидридом (ЗСаО*P2O5); песок же состоит в основном из диоксида кремния SiO2. При высокой температуре диоксид кремния вытесняет фосфорный ангидрид и, соединяясь с оксидом кальция, образует легкоплавкий силикат кальция CaSiO3, а фосфорный ангидрид восстанавливается углем до свободного фосфора:

Са3(PO4)2 + 3 SiO2 = 3CaSiO3 + P2O5

P2O5 + 5C = 2P + 5CO

Cкладывая оба уравнения получаем:

Ca3(PO4)2 + 3SiO2 + 5С = 3CaSiO3 + 2P + 5СО

Фосфор выделяется в виде паров, которые конденсируются в приемнике под водой.

18. Строение молекулы, физические и химические свойства, получение и применение аммиака. Свойства гидроксида и солей аммония.

Азот образует несколько соединений с водородом; из них наибольшее значение имеет аммиак — бесцветный газ с характерным резким запахом (запах «нашатырного спирта»).

В лаборатории аммиак обычно получают, нагревая хлорид аммония NН4Cl с гашеной известью Ca(OH)2. Реакция выражается уравнением

2NH4Cl + Ca(OH)2 = CaCl2 + 2H2O + 2NH3↑

Выделяющийся аммиак содержит пары воды. Для осушения его пропускают через натронную известь (смесь извести с едким натром).

Mecca 1 л аммиака при нормальных условиях равна 0,77 г. Поскольку этот газ значительно легче воздуха, то его можно собирать в перевернутые вверх дном сосуды.

При охлаждении до -33,4°С аммиак под обычным давлением превращается в прозрачную жидкость, затвердевающую при -77,8 °С.

В жидком аммиаке молекулы NH3 (µ = 1,48 D) связаны между собой водородными связями, что обуславливает сравнительно высокую темтпературу кипения аммиака (—33,4°С), не соответствующую его малой молекулярной массе (17),

Аммиак очень хорошо растворим в воде: 1 объем воды растворяет при комнатной температуре около 700 объемов аммиака. Концентрированный раствор содержит 25 % (масс.) NH3 и имеет плотность 0,91 г/см³. Раствор аммиака в воде иногда называют нашатырным спиртом. Обычный медицинский нашатырный спирт содержит 10% NH3. С повышением температуры растворимость аммиака уменьшается, поэтому он выделяется при нагревании из концентрированного раствора, чем иногда пользуются в лабораториях для получения небольших количеств газообразного аммиака. При низкой температуре из раствора аммиака может быть выделен кристаллогидрат NН2*Н2О, плавящийся при -79°С. Известен также кристаллогидрат состава 2NH3*H2O. В этих гидратах молекулы воды и аммиака соединены между собой водородными связями.

В химическом отношении аммиак довольно активен; он вступает во взаимодействие со многими веществами. В аммиаке азот имеет самую низкую степень окисленности (—3). Поэтому аммиак обладает только восстановительными свойствами. Если пропускать ток NH3 по трубке, вставленной в другую широкую трубку (рис. 114), по которой проходит кислород, то аммиак можно легко зажечь; он горит бледным зеленоватым пламенем. При горении аммиака образуется вода и свободный азот:

4NH3 + 3O2 = 6H2O + 2N2

Аммиак и соли аммония находят широкое применение. Как уже говорилось, аммиак даже при невысоком давлении (0,7—0,8 МПа) легко превращается в жидкость. Поскольку при испарении жидкого аммиака поглощается большое количество теплоты (1,37 кДж/г), то жидкий аммиак используется в различных холодильных устройствах.

Водные растворы аммиака применяются а химических лабораториях и производствах как слабое легколетучее основание; их используют также в медицине и в быту. Но большая часть получаемого в промышленности аммиака идет на приготовление азотной кислоты, а также других азотсодержащих веществ. К важнейшим из них относятся азотные удобрения, прежде всего сульфат и нитрат аммония и карбамид (стр. 427).

Большинство солей аммония бесцветны и хорошо растворимы в воде. По некоторым своим свойствам они подобны солям щелочных металлов, особенно калия (ионы К+ н NH+ имеют близкие размеры).

Соли аммония термически неустойчивы. При нагревании они разлагаются. Это разложение может происходить обратимо или необратимо. Соли аммония, анион которых не является окислителем или лишь в слабой степени проявляет окислительные свойства, распадаются обратимо. Например, при нагревании хлорид аммония как бы возгоняется — разлагается на аммиак и хлоро-водород, которые на холодных частях сосуда вновь соединяются в хлорид аммония: NH.4Cl ↔ NH3 + HCl

При обратимом распаде солей аммония, образованных нелетучими кислотами, улетучивается только аммиак. Однако продукты разложения — аммиак и кислота — будучи смешаны, вновь соединяются друг с другом. Примерами могут служить реакции распада сульфата аммония (NH4)2SO4 или фосфата аммония (NH4)3PO4.

Соли аммония, анион которых проявляет более резко выраженные окислительные своиства распадаются необратимо: протекает окислительно-восстановительная реакция, в ходе которой ион аммония окисляется, а анион восстанавливается. Примерами могут служить распад NH4NO2 (§ 130) или разложение нитрата аммония: NH4NO3 = NO2↑ + 2H2O

19. Оксиды азота. Получение и свойства, образование в атмосфере и экологическая роль оксидов азота (II) и (IV)

Оксиды азота. Азот образует с кислородом ряд оксидов; Все они могут быть получены из азотной кислоты или её солей.

Оксид азота(I) (оксид диазота, закись азота, веселящий газ, лат. Nitrogenium оxуdulatum) — соединение с химической формулой N2O. При нормальной температуре это бесцветный негорючий газ с приятным сладковатым запахом и привкусом. Иногда называется «веселящим газом» из-за производимого им опьяняющего эффекта.

Закись азота получают нагреванием сухого нитрата аммония. Разложение начинается при 170 град по Цельсию и сопровождается выделением тепла. Поэтому чтобы не дать протекать ему слишком бурно, следует вовремя прекратить нагревание, при температурах более 300 °C разлагается со взрывом:

NH4NO3 → N2O↑ + 2H2O.

Впервые был получен Гемфри Дэви. Бесцветный газ, тяжелее воздуха (относительная плотность 1,527), с характерным сладковатым запахом. Растворим в воде (0,6 объёма N2O в 1 объёме воды при 25 °C). При 0 °C и давлении 30 атм, а также при обычной температуре и давлении 40 атм сгущается в бесцветную жидкость. Из 1 кг жидкой закиси азота образуется 500 л газа. Не воспламеняется, но поддерживает горение. Смеси с эфиром, циклопропаном, хлорэтилом в определённых концентрациях взрывоопасны.

Химические свойства:

Относится к несолеобразующим оксидам. В нормальных условиях N2O химически инертен, при нагревании проявляет свойства окислителя:

N2O + H2 → N2↑ + H2O;

N2O + C → N2↑ + CO↑.

При взаимодействии с сильными окислителями N2O может проявлять свойства восстановителя:

5N2О + 8KMnO4 + 7H2SO4 → 5Mn(NO3)2 + 3MnSO4 + 4K2SO4 + 7H2O.

При нагревании N2O разлагается:

2N2O → 2N2↑ + O2↑.

Применение:

Используется в основном как средство для ингаляционного наркоза, в основном в сочетании с другими препаратами (из-за недостаточно сильного обезболивающего действия). В то же время это соединение можно назвать самым безопасным средством для наркоза, так как после его применения почти не бывает осложнений. Также иногда используется для улучшения технических характеристик двигателей внутреннего сгорания.

Окси́д азо́та (II) NO (моноксид азота) — несолеобразующий оксид азота. Он представляет собой безцветный газ, плохо растворимый в воде. Температура кипения −151,8 °C, температура плавления −163,7 °C. Сжижается он с трудом; в жидком и твёрдом виде имеет голубой цвет. Известно, что в твёрдом виде он состоит из слабосвязанных N2O2

Оксид азота(II) — единственный из оксидов азота, который можно получить непосредственно из свободных элементов соединением азота с кислородом при высоких температурах (1200—1300 °C) или в электрическом разряде. В природе он образуется в атмосфере при грозовых разрядах:

N2 + O2 → 2NO — 180,9 кДж

и тотчас же реагирует с кислородом:

2NO + O2 → 2NO2

При понижении температуры оксид азота(II) разлагается на азот и кислород, но если температура падает резко, то не успевший разложиться оксид существует достаточно долго: при низкой температуре скорость распада невелика. Такое резкое охлаждение называется «закалкой» и используется при одном из способов получения азотной кислоты.

В лаборатории его обычно получают взаимодействием 30%-ной HNO3 с некоторыми металлами, например, с медью:

3Cu + 8HNO3 (30 %) → 3Cu(NO3)2 + 2NO↑ + 4H2O

NO трудно отдаёт свой кислород, поэтому реагирует лишь с очень активными веществами (фосфор, фтор, бром, хлор), сильными окислителями (например, перманганатом калия KMnO4) или сильными восстановителями.

По отношению к галогенам NO проявляет свойства восстановителя:

2NO + Cl2 → 2NOCl (нитрозилхлорид).

В присутствии более сильных восстановителей NO проявляет окислительные свойства:

2SO2 + 2NO → 2SO3 + N2↑

Окси́д азо́та(IV) (диоксид азота, бурый газ) NO2 — газ, красно-бурого цвета, с характерным острым запахом. Температура плавления −11,2 °C, температура кипения 21,15 °C.

В обычном состоянии NO2 существует в равновесии со своим димером N2O4. Склонность к его образованию объясняется наличием в молекуле NO2 неспаренного электрона. При температуре ниже −12 °C белые кристаллы состоят только из молекул N2O4, при температуре 140 °C диоксид азота состоит только из молекул NO2, он очень тёмного, почти чёрного цвета. В точке кипения NO2 представляет из себя красно-бурую жидкость, содержащую около 0,1 % NO2.

В лаборатории NO2 обычно получают воздействием концентрированной азотной кислотой на медь:

Cu + 4HNO3 (конц.) → Cu(NO3)2 + 2NO2↑ + 2H2O.

Также его можно получить термическим разложением нитрата свинца, однако при проведении реакции следует соблюдать осторожность:

2Pb(NO3)2 → 2PbO + 4NO2↑ + O2↑.

Кислотный оксид, ему соответствуют азотная и азотистая кислоты. NO2 отличается высокой химической активностью. Он взаимодействует с неметаллами (фосфор, сера и углерод горят в нём). В этих реакциях NO2 — окислитель:

2NO2 + 2C → 2CO2↑ + N2↑;

10NO2 + 8P → 4P2O5 + 5N2↑ (10NO2 + 2P4 → 2P4O10 + 5N2↑);

Окисляет SO2 в SO3 — на этой реакции основан нитрозный метод получения серной кислоты:

SO2 + NO2 → SO3 + NO↑.

При растворении оксида азота(IV) в воде образуются азотная и азотистая кислоты (реакция диспропорционирования):

2NO2 + H2O ↔ HNO3 + HNO2.

Поскольку азотистая кислота неустойчива, при растворении NO2 в тёплой воде образуются HNO3 и NO:

3NO2 + H2O → 2HNO3 + NO↑.

Если растворение проводить в избытке кислорода, образуется только азотная кислота (NO2 проявляет свойства восстановителя):

4NO2 + H2O + O2 ↔ 4HNO3.

При растворении NO2 в щелочах образуются как нитраты, так и нитриты:

2NO2 + 2KOH → KNO3 + KNO2 + H2O

Применяется в производстве серной и азотной кислот, в качестве окислителя в жидком ракетном топливе и смесевых взрывчатых веществах.

20. Азотная кислота. Получение и применение. Взаимодействие с металлами и неметаллами ( на примере меди, железа и фосфора).Чистая азотная кислота HNO—бесцветная жидкость плотностью 1,51 г/см при - 42 °С застывающая в прозрачную кристаллическую массу. На воздухе она, подобно концентрированной соляной кислоте, «дымит», так как пары ее образуют с 'влагой воздуха мелкие капельки тумана,

Азотная кислота не отличается прочностью, Уже под влиянием света она постепенно разлагается:

Чем выше температура и чем концентрированнее кислота, тем быстрее идет разложение. Выделяющийся диоксид азота растворяется в кислоте и придает ей бурую окраску.

Азотная кислота принадлежит к числу наиболее сильных кислот; в разбавленных растворах она полностью распадается на ионы Н+ и NO3ˉ.

2. Окислительные свойства азотной кислоты. Характерным свойством азотной кислоты является ее ярко выраженная окислительная способность. Азотная кислота—один из энергичнейших окислителей. Многие неметаллы легко окисляются ею, превращаясь в соответствующие кислоты. Так, сера при кипячении с азотной кислотой постепенно окисляется в серную кислоту, фосфор — в фосфорную. Тлеющий уголек, погруженный в концентрированную HNO, ярко разгорается.

Азотная кислота действует почти на все металлы (за исключением золота, платины, тантала, родия, иридия), превращая их в нитраты, а некоторые металлы—в оксиды.

Концентрированная HNO пассивирует некоторые металлы. Еще Ломоносов открыл, что железо, легко растворяющееся в разбавленной азотной кислоте, не растворяется в холодной концентрированной HNO. Позже было установлено, что аналогичное действие азотная кислота оказывает на хром и алюминий. Эти металлы переходят под действием концентрированной азотной кислоты в пассивное состояние.Степень окисленности азота в азотной кислоте равна 4-5. Выступая в качестве окислителя, НNО может восстанавливаться до различных продуктов:

Какое из этих веществ образуется, т. е. насколько глубоко восстанавливается азотная кислота в том или ином случае, зависит от природы восстановителя и от условий реакции, прежде всего от концентрации кислоты. Чем выше концентрации HNO, тем менее глубоко она восстанавливается. При реакциях с концентрированной кислотой чаще всего выделяется . При взаимодействии разбавленной азотной кислоты с малоактивными металлами, например, с медью, выделяется NO. В случае более активных металлов — железа, цинка, — образуется. Сильно разбавленная азотная кислота взаимодействует с активными металлами—--цинком, магнием, алюминием -— с образованием иона аммония, дающего с кислотой нитрат аммония. Обычно одновременно образуются несколько продуктов.

Для иллюстрации приведем схемы реакций окисления некоторых металлов азотной кислотой;

При действии азотной кислоты на металлы водород, как правило, не выделяется.

При окислении неметаллов концентрированная азотная кислота, как и в случае металлов, восстанавливается до , например

Более разбавленная кислота обычно восстанавливается до NO, например:

Приведенные схемы иллюстрируют наиболее типичные случаи взаимодействия азотной кислоты с металлами и неметаллами. Вообще же, окислительно-восстановительные реакции, идущие с участием , протекают сложно.

Смесь, состоящая из 1 объема азотной и 3—4 объемов концентрированной соляной кислоты, называется царской водкой. Царская водка растворяет некоторые металлы, не взаимодействующие с азотной кислотой, в том числе и «царя металлов»—золото. Действие ее объясняется тем, что азотная кислота окисляет соляную с выделением свободного хлора и образованием хлороксида азота(III), или хлорида нитрозила, :

Хлорид нитрозила является промежуточным продуктом реакции и разлагается:

Хлор в момент выделения состоит из атомов, что и обусловливает высокую окислительную способность царской водки. Реакции окисления золота и платины протекают в основном согласно следующим уравнениям.

С избытком соляной кислоты хлорид золота(III) и хлорид платины (IV) образуют комплексные соединения

На многие органические вещества азотная кислота действует так, что один или несколько атомов водорода в молекуле органического соединения замещаются нитрогруппами . Этот процесс называется нитрованием и имеет большое значение в органической химии.

Азотная кислота — одно из важнейших соединений азота: в больших количествах она расходуется в производстве, азотных удобрений, взрывчатых веществ и органических красителей, служит окислителем во многих химических процессах, используется в производстве серной кислоты по нитрозному способу, применяется для изготовления целлюлозных лаков, кинопленки.

21. Нитраты. Нахождение в и роль нитратов в природе. Получение, свойства, термическая устойчивость.

Соли азотной кислоты называются нитратами. Все они хорошо растворяются в воде, а при нагревании разлагаются с выделением кислорода. При этом нитраты наиболее активных металлов переходят в нитриты:

Нитраты большинства остальных металлов при нагревании распадаются на оксид металла, кислород и диоксид азота. Например:

Наконец, нитраты наименее активных металлов (например, серебра, золота) разлагаются при нагревании до свободного металла:

Легко отщепляя кислород, нитраты при высокой температуре являются энергичными окислителями. Их водные растворы, напротив, почти не проявляют окислительных свойств.

Наиболее важное значение имеют нитраты натрия, калия, аммония и кальция, которые на практике называются селитрами.

Нитрат натрия или натриевая селитра, иногда называемая также чилийской селитрой, встречается в большом количестве в природе только в Чили.

Нитрат калия, или калийная селитра, в небольших количествах также встречается в природе, но главным образом получается искусственно при взаимодействии нитрата натрия с хлоридом калия.

Обе эти соли используются в качестве удобрений, причем нитрат калия содержит два необходимых растениям элемента: азот и калий. Нитраты натрия и калия применяются также при стекловарении и в пищевой промышленности для консервирования продуктов.

Нитрат кальция или кальциевая селитра, получается в больших количествах нейтрализацией азотной кислоты известью; применяется как удобрение.

22. Фосфаты в природе. Получение и свойства фосфорной кислоты.

Распространенность в природе. Массовая доля фосфора в земной коре составляет 0,08%. Важнейшими минералами фосфора, встречающимися в природе, являются фторапатит Ca5(PO4)3F и фосфорит Ca3(PO4)2.

    Свойства. Фосфор образует несколько аллотропных модификаций, которые заметно различаются по свойствам. Белый фосфор - мягкое кристаллическое вещество. Состоит из молекул P4. Плавится при температуре 44,1С. Очень хорошо растворим в сероуглероде CS2. Черезвычайно ядовит и легко загорается.

    При нагревании белого фосфора образуется Красный фосфор. Он представляет собой смесь нескольких модификаций, которые имеют различную длину молекул. Цвет красного фосфора в зависимости от способа  и условий получения может меняться от светло-красного до фиолетового и темно-коричневого. Температура его плавления 585-600.

    Черный фосфор - наиболее устойчивая модификация. По внешнему виду он похож на графит. В отличие от белого фосфора красный и черный фосфор не растворяются в сероуглероде, они не ядовиты и не огнеопасны.

    Фосфор химически более активен, чем азот. Химическая активность фосфора зависит от аллотропной модификации, в которой он находится. Так, наиболее активен белый фосфор, а наименее активен черный фосфор.

    Получение. Фосфор в промышленности получают из фосфата кальция Ca3(PO4)2, который выделяют из фосфоритов и фторапатитов. Метод получения основан на реакции восстановления Ca3(PO4)2 до фосфора.

    В качестве восстановителя соединений фосфора используют кокс (углерод). Для связывания соединений кальция в реакционную систему добавляют кварцевый песок SiO2. Процесс проводят в электопечах (производство относят к электротермическим). Реакция протекает по уравнению:

2Ca3(PO4)2 + 6SiO2 + 10C = 6CaSiO3 + P4 + 10CO

Продукт реакции - белый фосфор. Из-за наличия примесей технический фосфор имеет желтый цвет, поэтому в промышленности его называют желтым фосфором.

Фосфорные удобрения. Фосфор, так же как и азот, является важным элементом для обеспечения роста и жизнедеятельности растений. Растения извлекают фосфор из почвы, поэтому его запасы необходимо восполнять, периодически добавляя фосфорные удобрения. Фосфорные удобрения производят из фосфата кальция, который входит в состав природных фосфоритов и фторапатитов.

Простейшее фосфорное удобрение - фосфоритная мука представляет собой перемолотый фосфорит Ca3(PO4)2. Это удобрение труднорастворимо,  оно может усваиваться растениями только на кислых почвах.

Фосфорные кислоты — соединения фосфора в степени окисления +5 общей формулы P2O5·nH2O:

метафосфорная кислота — HPO3

P2O5 + H2O = 2HPO3 (на холоде);

ортофосфорная кислота — H3PO4

HPO3 + H2O = H3PO4 (при кипячении);

пирофосфорная кислота — H4P2O7

2H3PO4 = H4P2O7 + H2O (нагревание при 200°C);

Из ортофосфорной кислоты легко испаряется вода, и она становится концентрированной. При нагревании до 300°C ортофосфорная кислота отдает воду, разлагаясь сначала на пирофосфорную кислоту, затем различные полифосфорные кислоты. При этом образуется гигроскопичная стекловидная масса. Если затем эту массу разбавить водой, то она превратится обратно в ортофосфорную кислоту.


Наибольшее значение имеет ортофосфорная кислота (или просто фосфорная), которую для технических целей получают по реакции

Са3(РО4)2 + 3H2SO4 = 3CaSO4 + 2Н3РО4, и её соли — фосфаты. Н3РО4 применяют для производства удобрений, в пищевой, текстильной промышленности, в медицине, как флюс при пайке. Фосфаты применяют как фосфорные удобрения, в производстве эмалей, стёкол. По «дырообразующей» активности ортофосфорная кислота превосходит серную.

23. Общая характеристика элементов IVА группы, положение в Периодической системе, строение и

размер атомов, физические и химические (окислительно-восстановительные) свойства простых

веществ. Нахождение в природе.

Главную подгруппу четвертой группы периодической системы образуют пять элементов — углерод, кремний, германий, олово и свинец. При переходе от углерода к свинцу размеры атомов возрастают.
Поэтому следует ожидать, что способность к присоединению электронов, а следовательно, и неметаллические свойства будут при этом ослабевать, легкость же отдачи, электронов - возрастать.
Действительно, уже у германия проявляются металлические свойства, а у олова и свинца они преобладают над металлическими. Таким образом, только первые два члена описываемой группы являются неметаллами, германий причисляют и к металлам, и к неметаллам, олово и свинец - металлы.

Для элементов рассматриваемой группы характерны степени окисления +2 и +4.

164. Химические свойства углерода. Карбиды. При низких температурах и уголь, и графит и, в особенности, алмаз инертны. При нагревании их активность увеличивается: уголь легко соединяется с кислородом и служит хорошим восстановителем. Важнейший процесс металлургии — выплавка металлов из руд — осуществляется путем восстановления оксидов металлов углем (или монооксидом углерода).

С кислородом углерод образует диоксид (или двуокись) углерода СО2, часто называемый так же углекислым газом, и оксид углерода (II),или моноокись углерода, СО.

При очень высоких температурах углерод соединяется с водородом, серой, кремнием, бором и многими металлами; уголь вступает в реакции легче, чем графит и тем более алмаз.

Соединение углерода с металлами и другими элементами, которые по отношению к углероду являются электроположнтельными, называются карбидами. Их получают прокаливанием металлов или их оксидов с углем.

Диоксид углерода. Угольная кислота. Диоксид углерода СО2 постоянно образуется в природе при окислении органических веществ (гниение растительных и животных остатков, дыхание, сжигание топлива). В больших количествах он выделяется из вулканических трещин и из вод минеральных источников.

В лабораториях диоксид углерода обычно получают, действуя на мрамор СаСО3 соляной кислотой в аппарате Кипа:

СаСО3 + 2HCl = CaCl2 + CO2↑

В промышленности большие количества диоксида углерода получают при обжиге известняка:

CаCO3 = CаO + CO2↑

Угольная кислота H2CO3 может существовать только в водном растворе. При нагревании раствора диоксид углерода улетучивается, равновесие образования H2CO3 смещается влево, и в конце концов остается чистая вода.

Соли угольной кислоты могут быть получены или действием диоксида углерода на щелочи, или путем обменных реакций между растворимыми солями угольной кислоты и солями других кислот. Например:

NaOH + CO2 = NaHCO3

NaHCO3 + NaOH = Na2CO3 + H2O

BaCl2 + Na2CO3 = BaCO2↓ + 2NaCl

Оксид углерода(II), или монооксид углерода, СО — бесцветный ядовитый газ, конденсирующийся в жидкость только при -192°С и затвердевающий при -205°С. В воде оксид углерода растворим очень мало и не вступает с ней в химическое взаимодействие.

Топливо и его виды. Нефть, природный газ, каменный уголь, а также многие соединения углерода играют важнейшую роль в современной жизни, как источники получения энергии. При горении угля и углеродсодержащих соединений выделяется теплота, которая используется для производственных процессов, отопления, приготовления пищи. Большая же часть получаемой теплоты превращается в другие виды энергии и затрачивается на совершение механической работы.

24. Углерод  в природе. Аллотропия. Окислительно-восстановительные характеристики. Получение и применение разных аллотропных модификаций.

Углерод (лат. Carboneum), С - химический элемент IV группы периодической системы Менделеева. Известны два стабильных изотопа 12С (98,892 %) и 13С (1,108 %).

Углерод известен с глубокой древности. Древесный уголь служил для восстановления металлов из руд, алмаз - как драгоценный камень. Значительно позднее стали применяться графит для изготовления тиглей и карандашей.

Среднее содержание углерода в земной коре 2,3*10-2 % по массе (1*10 –2 в ультраосновных, 1*10 –2  в основных, 2*10 –2 в средних, 3*10 –2 в кислых горных породах).  Углерода накапливается в верхней части земной коры (биосфере): в живом веществе 18 % углерода, в древесине 50 %, в каменном угле 80 %, в нефти  85 %, антраците 96 %. Значит часть углерода литосферы сосредоточена в известняках и доломитах.

Число собственных минералов углерода - 112; исключительно велико число органических соединений углерода - углеводородов и их производных.

По сравнению со средним содержанием в земной коре человечество в исключительно больших количествах извлекает углерод из недр (уголь, нефть, природный газ), т.к. эти ископаемые — основные источники энергии.

Углерод широко распространён также в космосе; на Солнце он занимает 4-е место после водорода, гелия и кислорода

Углерод существует во множестве аллотропных модификаций с очень разнообразными физическими свойствами. Разнообразие модификаций обусловлено способностью углерода образовывать химические связи разного типа.

Электронные орбитали атома углерода могут иметь различную геометрию, в зависимости от степени гибридизации его электронных орбиталей. Существует три основных геометрии атома углерода.

тетраэдрическая, образуется при смешении одного s- и трех p-электронов (sp³-гибридизация). Атом углерода находится в центре тетраэдра, связан четырьмя эквивалентными σ-связями с атомами углерода или иными в вершинах тетраэдра. Такой геометрии атома углерода соответствуют аллотропные модификации углерода алмаз и лонсдейлит. Такой гибридизацией обладает углерод, например, в метане и других углеводородах.

тригональная, образуется при смешении одной s- и двух p-электронных орбиталей (sp²-гибридизация). Атом углерода имеет три равноценные σ-связи, расположенные в одной плоскости под углом 120° друг к другу. Не участвующая в гибридизации p-орбиталь, расположенная перпендикулярно плоскости σ-связей, используется для образования π-связи с другими атомами. Такая геометрия углерода характерна для графита, фенола и др.

дигональная, образуется при смешении одного s- и одного p-электронов (sp-гибридизация). При этом два электронных облака вытянуты вдоль одного направления и имеют вид несимметричных гантелей. Два других р-электрона дают π-связи. Углерод с такой геометрией атома образует особую аллотропную модификацию — карбин.

Основные и хорошо изученные кристаллические модификации углерода — алмаз и графит. При нормальных условиях термодинамически устойчив только графит, а алмаз и другие формы метастабильны. При атмосферном давлении и температуре выше 1200 K алмаз начинает переходить в графит, выше 2100 K превращение совершается за секунды. ΔН0 перехода — 1,898 кДж/моль. При нормальном давлении углерод сублимируется при 3 780 K. Жидкий углерод существует только при определенном внешнем давлении. Тройные точки: графит-жидкость-пар Т = 4130 K, р = 12,5 ГПа. Прямой переход графита в алмаз происходит при 3000 K и давлении 11—12 ГПа.

При давлении свыше 60 ГПа предполагают образование весьма плотной модификации С III (плотность на 15—20 % выше плотности алмаза), имеющей металлическую проводимость. При высоких давлениях и относительно низких температурах (ок. 1 200 K) из высокоориентированного графита образуется гексагональная модификация углерода с кристаллической решеткой типа вюрцита — лонсдейлит (а = 0,252 нм, с = 0,412 нм, пространственная группа Р63/ттс), плотность 3,51 г/см³, т. е. такая же, как у алмаза. Лонсдейлит найден также в метеоритах.

Кристаллическая модификация углерода гексагональной сингонии с цепочечным строением молекул называется карбин. Цепи имеют либо полиеновое строение (—C≡C—), либо поликумуленовое (=C=C=). Известно несколько форм карбина, отличающихся числом атомов в элементарной ячейке, размерами ячеек и плотностью (2,68—3,30 г/см³). Карбин встречается в природе в виде минерала чаоита (белые прожилки и вкрапления в графите) и получен искусственно — окислительной дегидрополиконденсацией ацетилена, действием лазерного излучения на графит, из углеводородов или ССl4 в низкотемпературной плазме.

При обычных температурах углерод химически инертен, при достаточно высоких соединяется со многими элементами, проявляет сильные восстановительные свойства. Химическая активность разных форм углерода убывает в ряду: аморфный углерод, графит, алмаз, на воздухе они воспламеняются при температурах соответственно выше 300—500 °C, 600—700 °C и 850—1000 °C.

Углерод играет огромную роль в жизни человека. Его применения столь же разнообразны, как сам этот многоликий элемент.

Углерод является основой всех органических веществ. Любой живой организм состоит в значительной степени из углерода. Углерод — основа жизни. Источником углерода для живых организмов обычно является СО2 из атмосферы или воды. В результате фотосинтеза он попадает в биологические пищевые цепи, в которых живые существа пожирают друг друга или останки друг друга и тем самым добывают углерод для строительства собственного тела. Биологический цикл углерода заканчивается либо окислением и возврашением в атмосферу, либо захоронением в виде угля или нефти.

Углерод в виде ископаемого топлива: угля и углеводородов(нефть, природный газ) — один из важнейших источников энергии для человечества.

Графит используется в карандашной промышленности. Также его используют в качестве смазки при особо высоких или низких температурах.

Алмаз, благодаря исключительной твердости, незаменимый абразивный материал. Кроме этого, ограненные алмазы — бриллианты используются в качестве драгоценных камней в ювелирных украшениях.

26. Углеводороды.

Углеводоро́ды в химии — органические соединения, состоящие исключительно из атомов углерода и водорода. Первые образуют основу, углеродный «скелет», а вторые ковалентно связаны с углеродными атомами «скелета», образуя стабильную молекулярную структуру.

Поскольку углерод имеет четыре валентных электрона, а водород — один, простейший углеводород есть метан, или болотный газ — CH4.

Метан - основной компонент природных (77—99 %), попутных нефтяных (31—90 %), рудничного и болотного газов (отсюда другие названия метана — болотный или рудничный газ). В анаэробных условиях (в болотах, переувлажнённых почвах, рубце жвачных животных) образуется биогенно. Получается также при коксовании каменного угля, гидрировании угля, Гидрогенолизе углеводородов в реакциях каталитического риформинга.

Применение:

Сырьё для получения многих ценных продуктов химической промышленности — метанола, формальдегида, ацетилена, сероуглерода, хлороформа, синильной кислоты, сажи. Для получения водяного газа (CH4 + Н2О = СО + ЗН2). Применяется как топливо. 

27. Карбонаты. Получение и применение оксида углерода (IV). Сода. Карбонатная буферная система. «Парниковый эффект».

Карбона́ты и ги́дрокарбонаты — соли угольной кислоты (H2CO3) Известны нормальные карбонаты (с анионом СО32−) и кислые или гидрокарбонатыанионом НСО3−).

Нормальные карбонаты широко распространены в природе, например: кальцит СаСО3, магнезит MgCO3, сидерит FeCO3, витерит ВаСО3 и др. Существуют и минералы, представляющие собой основные карбонаты, например, малахит CuСО3·Сu(ОН)2.

Гидрокарбонаты натрия, кальция и магния встречаются в растворённом виде в минеральных водах, а также, в небольшой концентрации, во всех природных водах, кроме атмосферных осадков и ледников. Гидрокарбонаты кальция и магния обуславливают так называемую временную жёсткость воды. При сильном нагревании воды (выше 60°C) гидрокарбонаты кальция и магния разлагаются на углекислый газ и малорастворимые карбонаты, которые выпадают в осадок на нагревательных элементах, дне и стенках посуды, внутренних поверхностях баков, бойлеров, труб, запорной арматуры и т.д., образуя накипь

Получение СО2

В промышленности получают из печных газов, из продуктов разложения природных карбонатов (известняк, доломит). Смесь газов промывают раствором карбоната калия, который поглощает углекислый газ, переходя в гидрокарбонат. Раствор гидрокарбоната при нагревании разлагается, высвобождая углекислоту. При промышленном производстве закачивается в баллоны.

В лабораторных условиях небольшие количества получают взаимодействием карбонатов и гидрокарбонатов с кислотами, например мрамора с соляной кислотой.

Применение СО2

В пищевой промышленности диоксид углерода используется как консервант и обозначается на упаковке под кодом Е290, а также в качестве разрыхлителя теста.

Жидкая углекислота (жидкая пищевая углекислота) — сжиженный углекислый газ, хранящийся под высоким давлением (~ 65-70 Атм). Бесцветная жидкость. При выпуске жидкой углекислоты из баллона в атмосферу часть её испаряется, а другая часть образует хлопья сухого льда.

Сухой лёд используется в качестве хладагента в ледниках и морозильных установках. В этом же качестве иногда используется и жидкая углекислота, так как её удобно транспортировать по трубам и трубкам внутри приборов.

Баллоны с жидкой углекислотой широко применяются в качестве огнетушителей. Баллоны с жидкой углекислотой широко применяются для производства газированной воды и лимонада. Углекислый газ используется в качестве инертной среды при сварке проволокой. Углекислота в баллончиках применяется в пневматическом оружии.

Бикарбонатная буферная система – мощная и, пожалуй, самая управляемая система внеклеточной жидкости и крови. На долю бикарбонатного буфера приходится около 10% всей буферной емкости крови. Бикарбонатная система представляет собой сопряженную кислотно-основную пару, состоящую из молекулы угольной кислоты Н2СО3, выполняющую роль донора протона, и бикарбонат-иона НСО3–, выполняющего роль акцептора протона

Парнико́вый эффе́кт — повышение температуры нижних слоёв атмосферы планеты по сравнению с эффективной температурой, то есть температурой теплового излучения планеты, наблюдаемого из космоса. Следует отличать парниковый эффект в атмосфере от такового в парниках, где он имеет совершенно иной механизм

Парниковые газы — газы, которые предположительно вызывают глобальный парниковый эффект.

Основными парниковыми газами, в порядке их оцениваемого воздействия на тепловой баланс Земли, являются водяной пар, углекислый газ, метан, озон, галоуглероды и оксид азота.

Источниками углекислого газа в атмосфере Земли являются вулканические выбросы, жизнедеятельность организмов, деятельность человека. Антропогенными источниками является сжигание ископаемого топлива, сжигание биомассы (в т. ч. сведение лесов), некоторые промышленные процессы (например производство цемента). Основными потребителями углекислого газа являются растения. В норме биоценоз поглощает приблизительно столько же углекислого газа, сколько и производит (в т. ч. за счет гниения биомассы).

Основными антропогенными источниками метана являются пищеварительная ферментация у скота, рисоводство, горение биомассы (в т. ч. сведение лесов). Как показали недавние исследования, быстрый рост концентрации метана в атмосфере происходил в первом тысячелетии нашей эры (предположительно в результате расширения сельхозпроизводства и скотоводства и выжигания лесов). В период с 1000 по 1700 годы концентрация метана упала на 40 %, но снова стала расти в последние столетия (предположительно в результате увеличения пахотных земель и пастбищ и выжигания лесов, использования древесины для отопления, увеличения поголовья домашнего скота, количества нечистот, выращивания риса). Некоторый вклад в поступление метана дают утечки при разработке месторождений каменного угля и природного газа, а также эмиссия метана в составе биогаза, образующегося на полигонах захоронения отходов.

28. Кремний.

Кремний - второй элемент в IV группе Периодической таблицы Д.И. Менделеева. Он находится прямо под углеродом и, следовательно, имеет сходные с ним свойства. На внешнем электронном слое у него четыре электрона, из которых в обычном состоянии два не спаренных. У кремния существуют соответствующие этому состоянию двухвалентные соединения, например SiO. Но гораздо более естественным при обычных температурах для кремния является четырехвалентное состояние, при котором один из электронов «перепрыгивает» с s-подуровня на p-подуровень (рис.2).

Внешний электронный слой у кремния находится дальше от ядра, чем у углерода, сила притяжения валентных электронов к нему меньше, поэтому свойства кремния ближе к металлическим. Кристаллический кремний обладает металлическим блеском, является полупроводником. Последнее его свойство объясняется малой прочностью ковалентных связей, существующих между атомами кремния. Они начинают разрушаться уже при комнатной температуре. При дальнейшем ее повышении высвобождается большое количество свободных электронов. Полагают, что при абсолютном нуле идеально чистый и правильный кремний должен быть идеальным электроизолятором. Но идеальная чистота и абсолютный нуль недостижимы, поэтому мы обладаем хорошим полупроводником.

В природе существует три изотопа кремния с массовыми числами 28, 29 и 30. Преобладает (92,27%) легкий изотоп - кремний-28. Известны также несколько радиоактивных изотопов.

Кремний - активный элемент. В природе он не встречается в свободном виде, и большинство его соединений очень устойчивы. Несмотря на распространенность кремния в природе, открыт он был сравнительно поздно. В 1825г. выдающийся шведский химик и минералог Якоб Берцелиус сумел в двух реакциях выделить не очень чистый кремний. Это был аморфный серый порошок. Для этого он восстановил калием газообразный тетрафторид кремния SiF4. Новый элемент был назван силицием (от латинского silex - камень). Русское название появилось спустя девять лет и сохранилось до наших дней.

Кремний, как и углерод, образует различные аллотропные модификации. Кристаллический кремний так же мало похож на аморфный, как алмаз на графит. Это твердое вещество серо-стального цвета с металлическим блеском и гранецентрированной кристаллической решеткой того же типа, что и у алмаза.

Технически чистый кремний (95-98%) сейчас получают главным образом восстановлением кремнезема в электрической дуге между графитовыми электродами. Используется также способ восстановления кремнезема коксом в электрических печах. Такой кремний используют в металлургии как раскислитель, связывающий и удаляющий из металла кислород, и как легирующую добавку, повышающую прочность и коррозийную стойкость сталей и многих сплавов на основе цветных металлов. В сплавы его добавляют в небольших количествах: избыток кремния приводит к хрупкости.

Один из способов получения высокочистого полупроводникового кремния был разработан во второй половине XIX века русским химиком Н.Н. Бекетовым и был одним из первых способов получения кремния в промышленности. Он основан на реакции между парами цинка и тетрахлорида кремния. Для реакции берут высокочистые реагенты и проводят ее при 950°С в трубчатом реакторе, изготовленном из плавленого кварца. Элементарный кремний образуется в виде игольчатых кристаллов, которые потом измельчают и промывают соляной кислотой, тоже весьма чистой. Затем следует еще одна ступень отчистки - зонная плавка, и лишь после нее поликристаллическую кремниевую массу превращают в монокристаллы.

Есть и другие реакции, в которых получают высокочистый полупроводниковый кремний. Это восстановление водородом трихлорсилана SiHCl3 или четыреххлористого кремния SiCl4 и термическое разложения моносилана, гидрида кремния SiH4 или тетраиодида SiI4. В последнем случае разложение соединения происходит на разогретой до 1000°С танталовой ленте. Дополнительная очистка зонной плавкой следует после каждой из этих реакций.

Соединения кремния

Кремний дает два типа оксидов - оксид кремния (IV) и оксид кремния (II). Оксид кремния (IV) наиболее прочный, не разлагается при высоких температурах и выше 223°С переходит в парообразное состояние. Не восстанавливает его и водород. Более того: сам кремний иногда применяется в качестве восстановителя, например при получении молибдена:

2MoO3+3Si = 3SiO2+2Mo

Поскольку при окислении кремния выделяется громадное количество теплоты, оксид кремния (IV) и молибден получаются в расплавленном состоянии.

В оксиде кремния (IV) молекул нет, так как за счет химической вязи Si--О--Si образуется своеобразный пространственный каркас. Таким образом, кусок кварца представляет как бы одну гигантскую молекулу. Кварц представляет собой неорганический полимер, и его формула (SiO2)n.

Чистый оксид кремния (IV) находится в природе в виде горного хрусталя, кристаллы которого достигают иногда больших размеров. Самый крупный кристалл, найденный в Казахстане, весил 70 т.

В больших количествах в промышленности готовят силикагель - частично гидратированный оксид кремния (IV). Для его получения на раствор жидкого стекла действуют соляной кислотой:

Na2SiO3+2HCl = 2NaCl nH2SiO3

Выпавшую в осадок метакремниевую кислоту отмывают от хлорида натрия водой и высушивают при 170 -180 °С. При этом образуется аморфный оксид кремния, содержащий небольшое количество химически связанной воды. Поэтому силикагелю придают условную формулу SiO2 nH2O. Высушенный силикагель может адсорбировать значительное количество паров воды, его применяют для осушки газов.

Широко применяется оксид кремния (IV) в промышленности и при научных исследованиях. В виде кварцевого песка его используют в стекольной промышленности; SiO2 - главный компонент силикатных стекол. Кварцевый песок - важнейший строительный материал. Кварцевый песок идет в больших количествах для изготовления одного из лучших огнеупоров - динаса. Его получают спеканием кварцевого песка, к которому добавлено 2-2,5% извести. Динас размягчается только при 1700°С, он служит для выкладки мартеновских печей и различных печей для получения цветных металлов.

Плавленый кварц (SiO2)n дает кварцевое стекло, обладающее интересным свойством: оно имеет самый низкий температурный коэффициент расширения, т. е. при нагревании кварцевое стекло практически не расширяется. Поэтому при резком нагревании или охлаждении посуда из кварцевого стекла не растрескивается. Применяют кварцевую посуду в химических лабораториях. Ее широкому распространению мешает большая хрупкость и значительные трудности в изготовлении (очень высокая температура плавления кварца).

Кремний образует кислотные, амфотерные и основные гидроксиды. Все они нерастворимы в воде. Оксид кремния (IV) и оксиды его аналогов с водой практически не реагируют, поэтому получить кислоты этим способом нельзя.

Силикаты - тугоплавкие и пассивные вещества. Большинство их нерастворимо в воде. Они существуют в газообразном, жидком и твердом виде, а также образуют высокодисперсные, или коллоидные, системы с размером частиц силикатов от 10 - 6 до 10 - 9 м. Коллоидные системы похожи на растворы, но в отличии от них имеют поверхность раздела между частицами силикатов дисперсионной средой, т. е. средой в которой растворено вещество. Примерами коллоидных систем являются халцедоны и опалы. Спектр состава силикатов чрезвычайно широк (алюмосиликаты, гидросиликаты и др.)

Для силикатных минералов нет систематических названий, поэтому названия отражают их внешний вид и свойства. Плагиоклаз в переводе с древнегреческого «косо раскалывающийся», пироксен - «тугоплавкий». Названия также даются по именам людей, открывших эти минералы.

В разное время представления о строении силикатов были разными. Первой научной теорией была поликремниевая. Она играла важную роль в середине XIX в. - 1920-х гг. Согласно этой теории силикаты есть соли кремниевых кислот. Все кремниевые кислоты можно задать формулой n SiO2 m H2O. Примерами служат метакремниевая кислотаH2SiO3 (n=1, m=1), ортокремниевая кислота H4SiO4 (n=1, m=2), дикремниевая кислота H2Si2O5 (n=2 m=1), пирокремниевая кислота H6Si2O7 (n=2, m=2). Соответствующие названия силикаты носят и сейчас, хотя поликремниевая теория уже не пользуется популярностью.

Из-за коллоидного характера силикатов, их нельзя получить в чистом виде. Поэтому встает вопрос о солеобразной природе силикатов. Но это не все. Рассмотрим два сходных по строению силиката: жадеит Na Al[Si2O6] и лейцит K Al[Si2O6]. По поликремниевой теории они являются солями метакремниевой кислоты, а, следовательно, должны обладать сходными свойствами. Но по своей природе это два совершенно разных вещества. Данная теория не объясняет зависимости между составом и свойствами веществ, хотя это является основной ее задачей.

Еще Д.И. Менделеев отмечал недостатки этой теории. Он предполагал изоморфизм в кристаллах силикатов, т.е. способность атомов замещать друг друга в кристаллических структурах. Причем это могут быть атомы не только одного типа, но и разных. Так, он проявляется в кристаллах алюмосиликатов, хотя алюминий и кремний - разные по типу атомы. Д.И. Менделеев называл подобные кристаллы «неопределенными соединениями», схожими со сплавами, но это сплавы не простых веществ, а близких оксидов. Полимерные соли кремния существуют не из-за существования полимерных кислот, а из-за полимеризации соединений кремния. Исследования Д.И. Менделеева сыграли важную роль в формировании взглядов на эту проблему.

В 1925-1931гг. У.Л. Брегг исследовал кристаллы алюмосиликатов, в том числе и с помощью рентгена. Он предложил структурную классификацию силикатов. По его мнению, силикаты представляли собой полимерные структуры, состоящие из тетраэдров - оксидов кремния, атомов заместивших его. Соединяются они с помощью атомов кислорода, ставших «общими» для двух тетраэдров. Такие атомы кислорода называются мостиковыми, а те, что не участвуют в образовании таких связей - не мостиковыми. Таким образом, создаются связи Si -- O -- Si или Si -- O - Al. Многообразие силикатов объясняется различными способами соединения этих тетраэдров.

Брегг предлагал классифицировать силикаты по типам кремнекислородных радикалов:

29-30. Алюминий

1.Общая характеристика алюминия

Природный алюминий состоит из одного нуклида 27Al. Конфигурация внешнего электронного слоя 3s2p1. Практически во всех соединениях степень окисления алюминия +3 (валентность III).

Радиус нейтрального атома алюминия 0,143 нм, радиус иона Al3+ 0,057 нм. Энергии последовательной ионизации нейтрального атома алюминия равны, соответственно, 5,984, 18,828, 28,44 и 120 эВ. По шкале Полинга электроотрицательность алюминия 1,5.

Простое вещество алюминий -- мягкий легкий серебристо-белый металл.

2.Свойства

Алюминий -- типичный металл, кристаллическая решетка кубическая гранецентрированная, параметр а = 0,40403 нм. Температура плавления чистого металла 660°C, температура кипения около 2450°C, плотность 2,6989 г/см3. Температурный коэффициент линейного расширения алюминия около 2,5·10-5 К-1 Стандартный электродный потенциал Al3+/Al -- 1,663В.

Химически алюминий -- довольно активный металл. На воздухе его поверхность мгновенно покрывается плотной пленкой оксида Al2О3, которая препятствует дальнейшему доступу кислорода (O) к металлу и приводит к прекращению реакции, что обусловливает высокие антикоррозионные свойства алюминия. Защитная поверхностная пленка на алюминии образуется также, если его поместить в концентрированную азотную кислоту.

С остальными кислотами алюминий активно реагирует:

6НСl + 2Al = 2AlCl3 + 3H2,

3Н2SO4 + 2Al = Al2(SO4)3 + 3H2.

Алюминий реагирует с растворами щелочей. Сначала растворяется защитная оксидная пленка:

Al2О3 + 2NaOH + 3H2O = 2Na[Al(OH)4].

Затем протекают реакции:

2Al + 6H2O = 2Al(OH)3 + 3H2,

NaOH + Al(OH)3 = Na[Al(OH)4],

или суммарно:

2Al + 6H2O + 2NaOH = Na[Al(OH)4] + 3Н2,

и в результате образуются алюминаты: Na[Al(OH)4] -- алюминат натрия (Na) (тетрагидроксоалюминат натрия), К[Al(OH)4] -- алюминат калия (K) (терагидроксоалюминат калия) или др. Так как для атома алюминия в этих соединениях характерно координационное число 6, а не 4, то действительные формулы указанных тетрагидроксосоединений следующие:

Na[Al(OH)4(Н2О)2] и К[Al(OH)4(Н2О)2].

При нагревании алюминий реагирует с галогенами:

2Al + 3Cl2 = 2AlCl3,

2Al + 3 Br2 = 2AlBr3.

Интересно, что реакция между порошками алюминия и иода (I) начинается при комнатной температуре, если в исходную смесь добавить несколько капель воды, которая в данном случае играет роль катализатора:

2Al + 3I2 = 2AlI3.

Взаимодействие алюминия с серой (S) при нагревании приводит к образованию сульфида алюминия:

2Al + 3S = Al2S3,

который легко разлагается водой:

Al2S3 + 6Н2О = 2Al(ОН)3 + 3Н2S.

С водородом (H) алюминий непосредственно не взаимодействует, однако косвенными путями, например, с использованием алюминийорганических соединений, можно синтезировать твердый полимерный гидрид алюминия (AlН3)х -- сильнейший восстановитель.

В виде порошка алюминий можно сжечь на воздухе, причем образуется белый тугоплавкий порошок оксида алюминия Al2О3.

Высокая прочность связи в Al2О3 обусловливает большую теплоту его образования из простых веществ и способность алюминия восстанавливать многие металлы из их оксидов, например:

3Fe3O4 + 8Al = 4Al2O3 + 9Fe и даже

3СаО + 2Al = Al2О3 + 3Са.

Такой способ получения металлов называют алюминотермией.

Амфотерному оксиду Al2О3 соответствует амфотерный гидроксид -- аморфное полимерное соединение, не имеющее постоянного состава. Состав гидроксида алюминия может быть передан формулой xAl2O3·yH2O, при изучении химии в школе формулу гидроксида алюминия чаще всего указывают как Аl(OH)3.

В лаборатории гидроксид алюминия можно получить в виде студенистого осадка обменными реакциями:

Al2(SO4)3 + 6NaOH = 2Al(OH)3 + 3Na2SO4,

или за счет добавления соды к раствору соли алюминия:

2AlCl3 + 3Na2CO3 + 3H2O = 2Al(OH)3 + 6NaCl + 3CO2,

а также добавлением раствора аммиака к раствору соли алюминия:

AlCl3 + 3NH3·H2O = Al(OH)3 + 3H2O + 3NH4Cl.

Название и история открытия: латинское aluminium происходит от латинского же alumen, означающего квасцы (сульфат алюминия и калия (K) KAl(SO4)2·12H2O), которые издавна использовались при выделке кож и как вяжущее средство. Из-за высокой химической активности открытие и выделение чистого алюминия растянулось почти на 100 лет. Вывод о том, что из квасцов может быть получена «земля» (тугоплавкое вещество, по-современному -- оксид алюминия) сделал еще в 1754 немецкий химик А. Маргграф. Позднее оказалось, что такая же «земля» может быть выделена из глины, и ее стали называть глиноземом. Получить металлический алюминий смог только в 1825 датский физик Х. К. Эрстед. Он обработал амальгамой калия (сплавом калия (K) со ртутью (Hg)) хлорид алюминия AlCl3, который можно было получить из глинозема, и после отгонки ртути (Hg) выделил серый порошок алюминия.

Только через четверть века этот способ удалось немного модернизировать. Французский химик А. Э. Сент-Клер Девиль в 1854 году предложил использовать для получения алюминия металлический натрий (Na), и получил первые слитки нового металла. Стоимость алюминия была тогда очень высока, и из него изготовляли ювелирные украшения.

Промышленный способ производства алюминия путем электролиза расплава сложных смесей, включающих оксид, фторид алюминия и другие вещества, независимо друг от друга разработали в 1886 году П. Эру (Франция) и Ч. Холл (США). Производство алюминия связано с высоким расходом электроэнергии, поэтому в больших масштабах оно было реализовано только в 20-ом веке. В Советском Союзе первый промышленный алюминий был получен 14 мая 1932 года на Волховском алюминиевом комбинате, построенном рядом с Волховской гидроэлектростанцией.

3.Нахождение в природе

По распространенности в земной коре алюминий занимает первое место среди металлов и третье место среди всех элементов (после кислорода (O) и кремния (Si)), на его долю приходится около 8,8% массы земной коры. Алюминий входит в огромное число минералов, главным образом, алюмосиликатов, и горных пород. Соединения алюминия содержат граниты, базальты, глины, полевые шпаты и др. Но вот парадокс: при огромном числе минералов и пород, содержащих алюминий, месторождения бокситов -- главного сырья при промышленном получении алюминия, довольно редки. В России месторождения бокситов имеются в Сибири и на Урале. Промышленное значение имеют также алуниты и нефелины. В качестве микроэлемента алюминий присутствует в тканях растений и животных. Существуют организмы-концентраторы, накапливающие алюминий в своих органах, -- некоторые плауны, моллюски.

4.Получение

Промышленное получение: при промышленном производстве бокситы сначала подвергают химической переработке, удаляя из них примеси оксидов кремния (Si), железа (Fe) и других элементов. В результате такой переработки получают чистый оксид алюминия Al2O3 -- основное сырье при производстве металла электролизом. Однако из-за того, что температура плавления Al2O3 очень высока (более 2000°C), использовать его расплав для электролиза не удается.

Выход ученые и инженеры нашли в следующем. В электролизной ванне сначала расплавляют криолит Na3AlF6 (температура расплава немного ниже 1000°C). Криолит можно получить, например, при переработке нефелинов Кольского полуострова. Далее в этот расплав добавляют немного Al2О3 (до 10% по массе) и некоторые другие вещества, улучающие условия проведения последующего процесса. При электролизе этого расплава происходит разложение оксида алюминия, криолит остается в расплаве, а на катоде образуется расплавленный алюминий:

2Al2О3 = 4Al + 3О2.

Так как анодом при электролизе служит графит, то выделяющийся на аноде кислород (O) реагирует с графитом и образуется углекислый газ СО2.

При электролизе получают металл с содержанием алюминия около 99,7%. В технике применяют и значительно более чистый алюминий, в котором содержание этого элемента достигает 99,999% и более.

5.Применение

По масштабам применения алюминий и его сплавы занимают второе место после железа (Fe)и его сплавов. Широкое применение алюминия в различных областях техники и быта связано с совокупностью его физических, механических и химических свойств: малой плотностью, коррозионной стойкостью в атмосферном воздухе, высокой тепло- и электропроводностью, пластичностью и сравнительно высокой прочностью. Алюминий легко обрабатывается различными способами -- ковкой, штамповкой, прокаткой и др. Чистый алюминий применяют для изготовления проволоки (электропроводность алюминия составляет 65,5% от электропроводности меди, но алюминий более чем в три раза легче меди, поэтому алюминий часто заменяет медь в электротехнике) и фольги, используемой как упаковочный материал. Основная же часть выплавляемого алюминия расходуется на получение различных сплавов. Сплавы алюминия отличаются малой плотностью, повышенной (по сравнению с чистым алюминием) коррозионной стойкостью и высокими технологическими свойствами: высокой тепло- и электропроводностью, жаропрочностью, прочностью и пластичностью. На поверхности сплавов алюминия легко наносятся защитные и декоративные покрытия.

Разнообразие свойств алюминиевых сплавов обусловлено введением в алюминий различных добавок, образующих с ним твердые растворы или интерметаллические соединения. Основную массу алюминия используют для получения легких сплавов -- дуралюмина (94% -- алюминий, 4% медь (Cu), по 0,5% магний (Mg), марганец (Mn), железо (Fe) и кремний (Si)), силумина (85-90% -- алюминий, 10-14% кремний (Si), 0,1% натрий (Na)) и др. В металлургии алюминий используется не только как основа для сплавов, но и как одна из широко применяемых легирующих добавок в сплавах на основе меди (Cu), магния (Mg),железа (Fe), >никеля (Ni) и др.

Сплавы алюминия находят широкое применение в быту, в строительстве и архитектуре, в автомобилестроении, в судостроении, авиационной и космической технике. В частности, из алюминиевого сплава был изготовлен первый искусственный спутник Земли. Сплав алюминия и циркония (Zr) -- циркалой -- широко применяют в ядерном реакторостроении. Алюминий применяют в производстве взрывчатых веществ.

Особо следует отметить окрашенные пленки из оксида алюминия на поверхности металлического алюминия, получаемые электрохимическим путем. Покрытый такими пленками металлический алюминий называют анодированным алюминием. Из анодированного алюминия, по внешнему виду напоминающему золото (Au), изготовляют различную бижутерию.

При обращении с алюминием в быту нужно иметь в виду, что нагревать и хранить в алюминиевой посуде можно только нейтральные (по кислотности) жидкости (например, кипятить воду). Если, например, в алюминиевой посуде варить кислые щи, то алюминий переходит в пищу и она приобретает неприятный «металлический» привкус. Поскольку в быту оксидную пленку очень легко повредить, то использование алюминиевой посуды все-таки нежелательно.

6.Биологическая роль

В организм человека алюминий ежедневно поступает с пищей (около 2-3 мг), но его биологическая роль не установлена. В среднем в организме человека (70 кг) в костях, мышцах содержится около 60 мг алюминия.

Другие работы

Тема- Горные породы


Полезные ископаемые Подготовила: Студент ? практикант Четвертого курса 41У группы Чугуевцева О. Полезные ископаемые Цель: Дать понятия о свойства...

Подробнее ...

I.e higher or lower pitch thn the surrounding...


Demonstrtive pronouns. Emphtic pronouns. Possessive pronouns bsolute form. Interrogtive pronouns.

Подробнее ...

процессуальные нормы и отношения.


Ее информационные основыпонятие и структура. Понятие и классификация. Понятие виды.

Подробнее ...

Структурная геология геологическое картирован...


Отложения расчленены на системы отделы и ярусы. Палеозойская эратема представлена осадочными отложениями среднего и верхнего девона нижнего и ср...

Подробнее ...