за и против.1



Работа добавлена на сайт TXTRef.ru: 2019-04-17

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

1 OLAP: что это и для чего………………………………………………..7

2 Универсальные критерии определения OLAP………………………...9

ОСНОВНАЯ ЧАСТЬ

1 Классификация OLAP-продуктов……………………………………..11

2 OLAP-клиент - OLAP-сервер: "за" и "против"……………………….13

2.1 Объем обрабатываемых данных………………………………….13

2.2 Производительность системы…………………………………….14

2.3 Организация архитектур с прямым доступом к первичным данным………………………………………………………………….16

2.4 Мощность ПК пользователей……………………………………..17

2.5 Сетевой трафик…………………………………………………….18

2.6 Затраты на внедрение и сопровождение………………………....18

2.7 Принципы работы OLAP-клиентов………………………………19

2.8 Заключение…………………………………………………………21

3 Ядро OLAP системы……………………………………………………22

3.1 Принципы построения……………………………………………..22

3.1.1 Кросс-таблица. ………………………………………………24

3.1.2 Подготовка данных…………………………………………..26

3.1.3Библиотека компонентов CubeBase…………………………27

3.2 Внутри гиперкуба………………………………………………….28

3.2.1 Загрузка данных в гиперкуб………………………………...28

3.2.2 Реализация гиперкуба………………………………………31

3.3 Построение срезов куба…………………………………………..34

3.4 Реализации OLAP…………………………………………………40

3.4.1 Хорошо известные OLAP-продукты ………………………40

3.4.2 Deductor ……………………………………………………...41

ЗАКЛЮЧЕНИЕ……………………………………………………………….44

СПИСОК ИСТОЧНИКОВ……………………………………………………46

ВВЕДЕНИЕ

1 OLAP: что это и для чего

Трудно найти в компьютерном мире человека, который хотя бы на интуитивном уровне не понимал, что такое базы данных и зачем они нужны. В отличие от традиционных реляционных СУБД, концепция OLAP не так широко известна, хотя загадочный термин "кубы OLAP" слышали, наверное, почти все. Что же такое OnLine Analytical Processing?

OLAP - это не отдельно взятый программный продукт, не язык программирования и даже не конкретная технология. Если постараться охватить OLAP во всех его проявлениях, то это совокупность концепций, принципов и требований, лежащих в основе программных продуктов, облегчающих аналитикам доступ к данным. Несмотря на то, что с таким определением вряд ли кто-нибудь не согласится, сомнительно, чтобы оно хоть на йоту приблизило неспециалистов к пониманию предмета. Поэтому в своем стремлении к познанию OLAP лучше идти другим путем. Для начала надо выяснить, зачем аналитикам надо как-то специально облегчать доступ к данным.

Дело в том, что аналитики - это особые потребители корпоративной информации. Задача аналитика - находить закономерности в больших массивах данных. Поэтому аналитик не будет обращать внимания на отдельно взятый факт,  ему нужна информация о сотнях и тысячах событий. Кстати, один из существенных моментов, который привелл к появлению OLAP - производительность и эффективность. Представим себе, что происходит, когда аналитику необходимо получить информацию, а средства OLAP на предприятии отсутствуют. Аналитик самостоятельно (что маловероятно) или с помощью программиста делает соответствующий SQL-запрос и получает интересующие данные в виде отчета или экспортирует их в электронную таблицу. Проблем при этом возникает великое множество. Во-первых, аналитик вынужден заниматься не своей работой (SQL-программированием) либо ждать, когда за него задачу выполнят программисты - все это отрицательно сказывается на производительности труда, повышается инфарктно-инсультный уровень и так далее. Во-вторых, один-единственный отчет или таблица, как правило, не спасает гигантов мысли и отцов русского анализа - и всю процедуру придется повторять снова и снова. В-третьих, как мы уже выяснили, аналитики по мелочам не спрашивают - им нужно все и сразу. Это означает (хотя техника и идет вперед семимильными шагами), что сервер корпоративной реляционной СУБД, к которому обращается аналитик, может задуматься глубоко и надолго, заблокировав остальные транзакции.

Концепция OLAP появилась именно для разрешения подобных проблем. Кубы OLAP представляют собой, по сути, мета-отчеты. Разрезая мета-отчеты (кубы, то есть) по измерениям, аналитик получает, фактически, интересующие его "обычные" двумерные отчеты (это не обязательно отчеты в обычном понимании этого термина - речь идет о структурах данных с такими же функциями). Преимущества кубов очевидны - данные необходимо запросить из реляционной СУБД всего один раз - при построении куба. Поскольку аналитики, как правило, не работают с информацией, которая дополняется и меняется "на лету", сформированный куб является актуальным в течение достаточно продолжительного времени. Благодаря этому, не только исключаются перебои в работе сервера реляционной СУБД (нет запросов с тысячами и миллионами строк ответов), но и резко повышается скорость доступа к данным для самого аналитика. Кроме того, как уже отмечалось, производительность повышается и за счет подсчета промежуточных сумм иерархий и других агрегированных значений в момент построения куба.

Конечно, за повышение таким способом производительности надо платить. Иногда говорят, что структура данных просто "взрывается" - куб OLAP может занимать в десятки и даже сотни раз больше места, чем исходные данные.

2 Универсальные критерии определения OLAP

Теперь, когда мы немного разобрались в том, как работает и для чего служит OLAP, стоит, все же, несколько формализовать наши знания и дать критерии OLAP уже без синхронного перевода на обычный человеческий язык. Эти критерии (всего числом 12) были сформулированы в 1993 году Е.Ф. Коддом - создателем концепции реляционных СУБД и, по совместительству, OLAP. Непосредственно их мы рассматривать не будем, поскольку позднее они были переработаны в так называемый тест FASMI, который определяет требования к продуктам OLAP. FASMI - это аббревиатура от названия каждого пункта теста:

- Fast (быстрый). Это свойство означает, что система должна обеспечивать ответ на запрос пользователя в среднем за пять секунд; при этом большинство запросов обрабатываются в пределах одной секунды, а самые сложные запросы должны обрабатываться в пределах двадцати секунд. Недавние исследования показали, что пользователь начинает сомневаться в успешности запроса, если он занимает более тридцати секунд.

- Analysis (аналитический). Система должна справляться с любым логическим и статистическим анализом, характерным для бизнес–приложений, и обеспечивает сохранение результатов в виде, доступном для конечного пользователя. Средства анализа могут включать процедуры анализа временных рядов, распределения затрат, конверсии валют, моделирования изменений организационных структур и некоторые другие.

- Shared (разделяемый). Система должна предоставлять широкие возможности разграничения доступа к данным и одновременной работы многих пользователей.

- Multidimensional (многомерный). Система должна обеспечивать концептуально многомерное представление данных, включая полную поддержку множественных иерархий.

- Information (информация). Мощность различных программных продуктов характеризуется количеством обрабатываемых входных данных. Разные OLAP–системы имеют разную мощность: передовые OLAP–решения могут оперировать, по крайней мере, в тысячу раз большим количеством данных по сравнению с самыми маломощными. При выборе OLAP–инструмента следует учитывать целый ряд факторов, включая дублирование данных, требуемую оперативную память, использование дискового пространства, эксплуатационные показатели, интеграцию с информационными хранилищами и т.п.

ОСНОВНАЯ ЧАСТЬ

1 Классификация OLAP-продуктов

Итак, суть OLAP заключается в том, что исходная для анализа информация представляется в виде многомерного куба, и обеспечивается возможность произвольно манипулировать ею и получать нужные информационные разрезы - отчеты. При этом конечный пользователь видит куб как многомерную динамическую таблицу, которая автоматически суммирует данные (факты) в различных разрезах (измерениях), и позволяет интерактивно управлять вычислениями и формой отчета. Выполнение этих операций обеспечивается OLAP-машиной (или машиной OLAP-вычислений).

На сегодняшний день в мире разработано множество продуктов, реализующих OLAP-технологии. Чтобы легче было ориентироваться среди них, используют классификации OLAP-продуктов: по способу хранения данных для анализа и по месту нахождения OLAP-машины. Рассмотрим подробнее каждую категорию OLAP-продуктов.

Начну я  с классификации по способу хранения данных. Напомню, что многомерные кубы строятся на основе исходных и агрегатных данных. И исходные и агрегатные данные для кубов могут храниться как в реляционных, так и многомерных базах данных. Поэтому в настоящее время применяются три способа хранения данных: MOLAP (Multidimensional OLAP), ROLAP (Relational OLAP) и HOLAP (Hybrid OLAP). Соответственно, OLAP-продукты по способу хранения данных делятся на три аналогичные категории:

  1.  В случае MOLAP, исходные и агрегатные данные хранятся в многомерной БД или в многомерном локальном кубе.
  2.  В ROLAP-продуктах исходные данные хранятся в реляционных БД или в плоских локальных таблицах на файл-сервере. Агрегатные данные могут помещаться в служебные таблицы в той же БД. Преобразование данных из реляционной БД в многомерные кубы происходит по запросу OLAP-средства.
  3.  В случае использования HOLAP архитектуры исходные данные остаются в реляционной базе, а агрегаты размещаются в многомерной. Построение OLAP-куба выполняется по запросу OLAP-средства на основе реляционных и многомерных данных.

Следующая классификация - по месту размещения OLAP-машины. По этому признаку OLAP-продукты делятся на OLAP-серверы и OLAP-клиенты:

- В серверных OLAP-средствах вычисления и хранение агрегатных данных выполняются отдельным процессом - сервером. Клиентское приложение получает только результаты запросов к многомерным кубам, которые хранятся на сервере. Некоторые OLAP-серверы поддерживают хранение данных только в реляционных базах, некоторые - только в многомерных. Многие современные OLAP-серверы поддерживают все три способа хранения данных: MOLAP, ROLAP и HOLAP.

- OLAP-клиент устроен по-другому. Построение многомерного куба и OLAP-вычисления выполняются в памяти клиентского компьютера. OLAP-клиенты также делятся на ROLAP и MOLAP. А некоторые могут поддерживать оба варианта доступа к данным.

У каждого из этих подходов, есть свои "плюсы" и "минусы". Вопреки распространенному мнению о преимуществах серверных средств перед клиентскими, в целом ряде случаев применение OLAP-клиента для пользователей может оказаться эффективнее и выгоднее использования OLAP-сервера.

2 OLAP-клиент - OLAP-сервер: "за" и "против"

При построении информационной системы OLAP-функциональность может быть реализована как серверными, так и клиентскими OLAP-средствами. На практике выбор является результатом компромисса эксплуатационных показателей и стоимости программного обеспечения.

2.1 Объем обрабатываемых данных

Объем данных определяется совокупностью следующих характеристик: количество записей, количество измерений, количество элементов измерений, длина измерений и количество фактов. Известно, что OLAP-сервер может обрабатывать большие объемы данных, чем OLAP-клиент при равной мощности компьютера. Это объясняется тем, что OLAP-сервер хранит на жестких дисках многомерную базу данных, содержащую заранее вычисленные кубы.

Клиентские программы в момент выполнения OLAP-операций выполняют к ней запросы на SQL-подобном языке, получая не весь куб, а его отображаемые фрагменты. OLAP-клиент в момент работы должен иметь в оперативной памяти весь куб. В случае ROLAP-архитектуры, необходимо предварительно загрузить в память весь используемый для вычисления куба массив данных. Кроме того, при увеличении числа измерений, фактов или элементов измерений количество агрегатов растет в геометрической прогрессии. Таким образом, объем данных, обрабатываемых OLAP-клиентом, находится в прямой зависимости от объема оперативной памяти ПК пользователя.

Однако заметим, что большинство OLAP-клиентов обеспечивают выполнение распределенных вычислений. Поэтому под количеством обрабатываемых записей, которое ограничивает работу клиентского OLAP-средства, понимается не объем первичных данных корпоративной БД, а размер агрегированной выборки из нее. OLAP-клиент генерирует запрос к СУБД, в котором описываются условия фильтрации и алгоритм предварительной группировки первичных данных. Сервер находит, группирует записи и возвращает компактную выборку для дальнейших OLAP-вычислений. Размер этой выборки может быть в десятки и сотни раз меньше объема первичных, не агрегированных записей. Следовательно, потребность такого OLAP-клиента в ресурсах ПК существенно снижается.

Кроме того, на количество измерений накладывают ограничения возможности человеческого восприятия. Известно, что средний человек может одновременно оперировать 3-4, максимум 8 измерениями. При большем количестве измерений в динамической таблице восприятие информации существенно затрудняется. Этот фактор следует учитывать при предварительном расчете оперативной памяти, которая может потребоваться OLAP-клиенту.

Длина измерений также влияет на размер адресного пространства OLAP-средства, занятого при вычислении OLAP-куба. Чем длиннее измерения, тем больше ресурсов требуется для выполнения предварительной сортировки многомерного массива, и наоборот. Только короткие измерения в исходных данных - еще один аргумент в пользу OLAP-клиента.

2.2 Производительность системы

Эта характеристика определяется двумя рассмотренными выше факторами: объемом обрабатываемых данных и мощностью компьютеров. При возрастании количества, например, измерений, производительность всех OLAP-средств снижается за счет значительного увеличения количества агрегатов, но при этом темпы снижения разные. Продемонстрируем эту зависимость на графике. Дддддддддддддддддд



Схема 1. Зависимость производительности клиентских и серверных OLAP-средств от увеличения объема данных

Скоростные характеристики OLAP-сервера менее чувствительны к росту объема данных. Это объясняется различными технологиями обработки запросов пользователей OLAP-сервером и OLAP-клиентом. Например, при операции детализации OLAP-сервер обращается к хранимым данным и "вытягивает" данные этой "ветки". OLAP-клиент же вычисляет весь набор агрегатов в момент загрузки.

Однако до определенного объема данных производительность серверных и клиентских средств является сопоставимой. Для OLAP-клиентов, поддерживающих распределенные вычисления, область сопоставимости производительности может распространяться на объемы данных, покрывающие потребности в OLAP-анализе огромного количества пользователей. Это подтверждают результаты внутреннего тестирования MS OLAP Server и OLAP-клиента "Контур Стандарт" . Тест выполнен на ПК IBM PC Pentium Celeron 400 МГц, 256 Mb для выборки в 1 миллион уникальных (т.е. агрегированных) записей с 7 измерениями, содержащими от 10 до 70 членов. Время загрузки куба в обоих случаях не превышает 1 секунды, а выполнение различных OLAP-операций (drill up, drill down, move, filter и др.) выполняется за сотые доли секунды.

Когда размер выборки превысит объем оперативной памяти, начинается обмен (swapping) с диском и производительность OLAP-клиента резко падает. Только с этого момента можно говорить о преимуществе OLAP-сервера.

Следует помнить, что точка "перелома" определяет границу резкого удорожания OLAP-решения. Для задач каждого конкретного пользователя эта точка легко определяется по тестам производительности OLAP-клиента. Такие тесты можно получить у компании-разработчика.

Кроме того, стоимость серверного OLAP-решения растет при увеличении количества пользователей. Дело в том, что OLAP-сервер выполняет вычисления для всех пользователей на одном компьютере. Соответственно, чем больше количество пользователей, тем больше оперативной памяти и процессорной мощности требуется компьютеру.

Таким образом, если объемы обрабатываемых данных лежат в области сопоставимой производительности серверных и клиентских систем, то при прочих равных условиях, использование OLAP-клиента будет выгоднее.

2.3 Организация архитектур с прямым доступом к первичным данным

Использование OLAP-сервера в "классической" идеологии предусматривает выгрузку данных реляционных СУБД в многомерную БД. Выгрузка выполняется за определенный период, поэтому данные OLAP-сервера не отражают состояние на текущий момент. Этого недостатка лишены только те OLAP-серверы, которые поддерживают ROLAP-режим работы.

Аналогичным образом, целый ряд OLAP-клиентов позволяет реализовать ROLAP- и Desktop-архитектуру с прямым доступом к БД. Это обеспечивает анализ исходных данных в режиме on-line.

2.4 Мощность ПК пользователей

OLAP-сервер предъявляет минимальные требования к мощности клиентских терминалов. Объективно, требования OLAP-клиента выше, т.к. он производит вычисления в оперативной памяти ПК пользователя. Состояние парка аппаратных средств конкретной организации - важнейший показатель, который должен быть учтен при выборе OLAP-средства. Но и здесь есть свои "плюсы" и "минусы". OLAP-сервер не использует огромную вычислительную мощность современных персональных компьютеров. В случае, если организация уже имеет парк современных ПК, неэффективно применять их лишь в качестве отображающих терминалов и в тоже время делать дополнительные затраты на центральный сервер.

Если мощность компьютеров пользователей "оставляет желать лучшего", OLAP-клиент будет работать медленно или не сможет работать вовсе. Покупка одного мощного сервера может оказаться дешевле модернизации всех ПК.

Здесь полезно принять во внимание тенденции в развитии аппаратного обеспечения. Поскольку объемы данных для анализа являются практически константой, то стабильный рост мощности ПК будет приводить к расширению возможностей OLAP-клиентов и вытеснению ими OLAP-серверов в сегмент очень больших баз данных.

2.5 Сетевой трафик

При использовании OLAP-сервера по сети на ПК клиента передаются только данные для отображения, в то время как OLAP-клиент получает весь объем данных первичной выборки. Поэтому там, где применяется OLAP-клиент, сетевой трафик будет выше.

Но, при применении OLAP-сервера операции пользователя, например, детализация, порождают новые запросы к многомерной базе, а, значит, новую передачу данных. Выполнение же OLAP-операций OLAP-клиентом производится в оперативной памяти и, соответственно, не вызывает новых потоков данных в сети.

Также необходимо отметить, что современное сетевое аппаратное обеспечение обеспечивает высокий уровень пропускной способности.

Поэтому в подавляющем большинстве случаев анализ БД "средних" размеров с помощью OLAP-клиента не будет тормозить работу пользователя.

2.6 Затраты на внедрение и сопровождение

Стоимость OLAP-сервера достаточно высока. Сюда же следует плюсовать стоимость выделенного компьютера и постоянные затраты на администрирование многомерной базы. Кроме того, внедрение и сопровождение OLAP-сервера требует от персонала достаточно высокой квалификации.

Стоимость OLAP-клиента на порядок ниже стоимости OLAP-сервера. Администрирования и дополнительного технического оборудования под сервер не требуется. К квалификации персонала при внедрении OLAP-клиента высоких требований не предъявляется. OLAP-клиент может быть внедрен значительно быстрее OLAP-сервера.

2.7 Принципы работы OLAP-клиентов

Разработка аналитических приложений с помощью клиентских OLAP-средств - процесс быстрый и не требующий специальной подготовки исполнителя. Пользователь, знающий физическую реализацию базы данных, может разработать аналитическое приложение самостоятельно, без привлечения ИТ-специалиста.

При использовании OLAP-сервера необходимо изучить 2 разные системы, иногда от различных поставщиков, - для создания кубов на сервере, и для разработки клиентского приложения. OLAP-клиент предоставляет единый визуальный интерфейс для описания кубов и настройки к ним пользовательских интерфейсов.

   Рассмотрим процесс создания OLAP-приложения с помощью клиентского инструментального средства.ддддддддддддддддддддддддд



Схема 2. Создание OLAP-приложения с помощью клиентского ROLAP-средства

Принцип работы ROLAP-клиентов - предварительное описание семантического слоя, за которым скрывается физическая структура исходных данных. При этом источниками данных могут быть: локальные таблицы, РСУБД. Список поддерживаемых источников данных определяется конкретным программным продуктом. После этого пользователь может самостоятельно манипулировать понятными ему объектами в терминах предметной области для создания кубов и аналитических интерфейсов.

Принцип работы клиента OLAP-сервера иной. В OLAP-сервере при создании кубов пользователь манипулирует физическими описаниями БД.

При этом в самом кубе создаются пользовательские описания. Клиент OLAP-сервера настраивается только на куб.

Поясним принцип работы ROLAP-клиента на примере создания динамического отчета о продажах (см. схему 2). Пусть исходные данные для анализа хранятся в двух таблицах: Sales и Deal.

При создании семантического слоя источники данных - таблицы Sales и Deal - описываются понятными конечному пользователю терминами и превращаются в "Продукты" и "Сделки". Поле "ID" из таблицы "Продукты" переименовывается в "Код", а "Name" - в "Товар" и т.д.

Затем создается бизнес-объект "Продажи". Бизнес-объект - это плоская таблица, на основе которой формируется многомерный куб. При создании бизнес-объекта таблицы "Продукты" и "Сделки" объединяются по полю "Код" товара. Поскольку для отображения в отчете не потребуются все поля таблиц - бизнес-объект использует только поля "Товар", "Дата" и "Сумма".

Далее на базе бизнес-объекта создается OLAP-отчет. Пользователь выбирает бизнес-объект и перетаскивает его атрибуты в области колонок или строк таблицы отчета.

В нашем примере на базе бизнес-объекта "Продажи" создан отчет по продажам товаров по месяцам.

При работе с интерактивным отчетом пользователь может задавать условия фильтрации и группировки такими же простыми движениями "мышью". В этот момент ROLAP-клиент обращается к данным в кэше. Клиент же OLAP-сервера генерирует новый запрос к многомерной базе данных. Например, применив в отчете о продажах фильтр по товарам, можно получить отчет о продажах интересующих нас товаров.

Все настройки OLAP-приложения могут храниться в выделенном репозитории метаданных, в приложении или в системном репозитории многомерной базы данных. Реализация зависит от конкретного программного продукта.

2.8 Заключение

Итак, в каких случаях применение OLAP-клиента для пользователей может оказаться эффективнее и выгоднее использования OLAP-сервера?

- Экономическая целесообразность применения OLAP-сервера возникает, когда объемы данных очень велики и непосильны для OLAP-клиента, иначе более оправдано применение последнего. В этом случае OLAP-клиент сочетает в себе высокие характеристики производительности и низкую стоимость.

- Мощные ПК аналитиков - еще один довод в пользу OLAP-клиентов. При применении OLAP-сервера эти мощности не используются. Среди преимуществ OLAP-клиентов можно также назвать следующее:

- Затраты на внедрение и сопровождение OLAP-клиента существенно ниже, чем затраты на OLAP-сервер.

- При использовании OLAP-клиента со встроенной машиной передача данных по сети производится один раз. При выполнении OLAP-операций новых потоков данных не порождается.

- Настройка ROLAP-клиентов упрощена за счет исключения промежуточного звена - создания многомерной базы.

3 Ядро OLAP системы

3.1 Принципы построения.

Из уже сказанного, ясно, что механизм OLAP является на сегодня одним из популярных методов анализа данных. Есть два основных подхода к решению этой задачи. Первый из них называется Multidimensional OLAP (MOLAP) – реализация механизма при помощи многомерной базы данных на стороне сервера, а второй Relational OLAP (ROLAP) – построение кубов "на лету" на основе SQL запросов к реляционной СУБД. Каждый из этих подходов имеет свои плюсы и минусы. Их сравнительный анализ выходит за рамки этой работы. Здесь будет описана только  реализация ядра настольного ROLAP модуля.

Такая задача возникла после применения ROLAP системы, построенной на основе компонентов Decision Cube, входящих в состав Borland Delphi. К сожалению, использование этого набора компонент показало низкую производительность на больших объемах данных. Остроту этой проблемы можно снизить, стараясь отсечь как можно больше данных перед подачей их для построения кубов. Но этого не всегда бывает достаточно.

В Интернете и прессе можно найти много информации об OLAP системах, но практически нигде не сказано о том, как это устроено внутри.

Схема работы:

Общую схему работы настольной OLAP системы можно представить следующим образом:

Схема 3. Работа настольной OLAP системы

Алгоритм работы следующий:

  1.  Получение данных в виде плоской таблицы или результата выполнения SQL запроса.
  2.  Кэширование данных и преобразование их к многомерному кубу.
  3.  Отображение построенного куба при помощи кросс-таблицы или диаграммы и т.п. В общем случае, к одному кубу может быть подключено произвольное количество отображений.

Рассмотрим как подобная система может быть устроена внутри. Начнем мы это с той стороны, которую можно посмотреть и пощупать, то есть с отображений. Отображения, используемые в OLAP системах, чаще всего бывают двух видов – кросс-таблицы и диаграммы. Рассмотрим кросс-таблицу, которая является основным и наиболее распространенным способом отображения куба.

3.1.1 Кросс-таблица.

На приведенном ниже рисунке, желтым цветом отображены строки и столбцы, содержащие агрегированные результаты, светло-серым цветом отмечены ячейки, в которые попадают факты и темно-серым ячейки, содержащие данные размерностей.

Рисунок 1. Схематическое изображение кросс-таблицы

Таким образом, таблицу можно разделить на следующие элементы, с которыми мы и будем работать в дальнейшем:

Рисунок 2. Фрагмент кросс-таблицы

Заполняя матрицу с фактами, мы должны действовать следующим образом:

- На основании данных об измерениях определить координаты добавляемого элемента в матрице.

- Определить координаты столбцов и строк итогов, на которые влияет добавляемый элемент.

- Добавить элемент в матрицу и соответствующие столбцы и строки итогов.

При этом нужно отметить то, что полученная матрица будет сильно разреженной, почему ее организация в виде двумерного массива (вариант, лежащий на поверхности) не только нерациональна, но, скорее всего, и невозможна в связи с большой размерностью этой матрицы, для хранения которой не хватит никакого объема оперативной памяти. Например, если наш куб содержит информацию о продажах за один год, и если в нем будет всего 3 измерения – Клиенты (250), Продукты (500) и Дата (365), то мы получим матрицу фактов следующих размеров: кол-во элементов = 250 х 500 х 365 = 45 625 000. И это при том, что заполненных элементов в матрице может быть всего несколько тысяч. Причем, чем больше количество измерений, тем более разреженной будет матрица.

Поэтому, для работы с этой матрицей нужно применить специальные механизмы работы с разреженными матрицами. Возможны различные варианты организации разреженной матрицы. Они довольно хорошо описаны в литературе по программированию, например, в первом томе классической книги "Искусство программирования" Дональда Кнута.

Рассмотрим теперь, как можно определить координаты факта, зная соответствующие ему измерения. Для этого рассмотрим подробнее структуру заголовка:

При этом можно легко найти способ определения номеров соответствующей ячейки и итогов, в которые она попадает. Здесь можно предложить несколько подходов. Один из них – это использование дерева для поиска соответствующих ячеек. Это дерево может быть построено при проходе по выборке. Кроме того, можно легко определить аналитическую рекуррентную формулу для вычисления требуемой координаты.

3.1.2 Подготовка данных

Данные, хранящиеся в таблице необходимо преобразовать для их использования. Так, в целях повышения производительности при построении гиперкуба, желательно находить уникальные элементы, хранящиеся в столбцах, являющихся измерениями куба. Кроме того, можно производить предварительное агрегирование фактов для записей, имеющих одинаковые значения размерностей. Как уже было сказано выше, для нас важны уникальные значения, имеющиеся в полях измерений. Тогда для их хранения можно предложить следующую структуру:

Схема 4. Структура хранения уникальных значений

При использовании такой структуры мы значительно снижаем потребность в памяти. Что довольно актуально, т.к. для увеличения скорости работы желательно хранить данные в оперативной памяти. Кроме того, хранить можно только массив элементов, а их значения выгружать на диск, так как они будут нам требоваться только при выводе кросс-таблицы.

3.1.3Библиотека компонентов CubeBase

Описанные выше идеи были положены в основу при создании библиотеки компонентов CubeBase.

Схема 5. Структура библиотеки компонентов CubeBase

TСubeSource осуществляет кэширование и преобразование данных во внутренний формат, а также предварительное агрегирование данных. Компонент TСubeEngine осуществляет вычисление гиперкуба и операции с ним. Фактически, он является OLAP-машиной, осуществляющей преобразование плоской таблицы в многомерный набор данных. Компонент TCubeGrid выполняет вывод на экран кросс-таблицы и управление отображением гиперкуба. TСubeChart позволяет увидеть гиперкуб в виде графиков, а компонент TСubePivote управляет работой ядра куба.

3.2 Внутри гиперкуба

Итак, мной была рассмотрена архитектура и взаимодействие компонентов, которые могут быть использованы для построения OLAP машины. Теперь  рассмотрим подробнее внутреннее устройство компонентов.

3.2.1 Загрузка данных в гиперкуб

Первым этапом работы системы будет загрузка данных и преобразование их во внутренний формат. Закономерным будет вопрос – а зачем это надо, ведь можно просто использовать данные из плоской таблицы, просматривая ее при построении среза куба. Для того чтобы ответить на этот вопрос, рассмотрим структуру таблицы с точки зрения OLAP машины. Для OLAP системы колонки таблицы могут быть либо фактами, либо измерениями. При этом логика работы с этими колонками будет разная. В гиперкубе измерения фактически являются осями, а значения измерений – координатами на этих осях. При этом куб будет заполнен сильно неравномерно – будут сочетания координат, которым не будут соответствовать никакие записи и будут сочетания, которым соответствует несколько записей в исходной таблице, причем первая ситуация встречается чаще, то есть куб будет похож на вселенную – пустое пространство, в отдельных местах которого встречаются скопления точек (фактов). Таким образом, если мы при начальной загрузке данных произведем преагрегирование данных, то есть объединим записи, которые имеют одинаковые значения измерений, рассчитав при этом предварительные агрегированные значения фактов, то в дальнейшем нам придется работать с меньшим количеством записей, что повысит скорость работы и уменьшит требования к объему оперативной памяти.

Для построения срезов гиперкуба нам необходимы следующие возможности – определение координат (фактически значения измерений) для записей таблицы, а также определение записей, имеющих конкретные координаты (значения измерений). Рассмотрим каким образом можно реализовать эти возможности.

Для хранения гиперкуба проще всего использовать базу данных своего внутреннего формата. Схематически преобразования можно представить следующим образом:

Схема 6. Преобразование базы данных внутреннего формата в нормализованную базу данных

То есть вместо одной таблицы мы получили нормализованную базу данных. Вообще–то нормализация снижает скорость работы системы, – могут сказать специалисты по базам данных, и в этом они будут безусловно правы, в случае когда нам надо получить значения для элементов словарей (в нашем случае значения измерений). Но все дело в том, что нам эти значения на этапе построения среза вообще не нужны. Как уже было сказано выше, нас интересуют только координаты в нашем гиперкубе, поэтому определим координаты для значений измерений. Самым простым будет перенумеровать значения элементов. Для того, чтобы в пределах одного измерения нумерация была однозначной, предварительно отсортируем списки значений измерений (словари, выражаясь терминами БД) в алфавитном порядке. Кроме того, перенумеруем и факты, причем факты преагрегированные. Получим следующую схему:

Схема 7. Перенумерация нормализованной БД для определения координат значений измерений

Теперь осталось только связать элементы разных таблиц между собой. В теории реляционных баз данных это осуществляется при помощи специальных промежуточных таблиц. Нам достаточно каждой записи в таблицах измерений поставить в соответствие список, элементами которого будут номера фактов, при формировании которых использовались эти измерения (то есть определить все факты, имеющие одинаковое значение координаты, описываемой этим измерением). Для фактов соответственно каждой записи поставим в соответствие значения координат, по которым она расположена в гиперкубе. В дальнейшем везде под координатами записи в гиперкубе будут пониматься номера соответствующих записей в таблицах значений измерений. Тогда для нашего гипотетического примера получим следующий набор, определяющий внутреннее представление гиперкуба:

Схема 8. Внутреннее представление гиперкуба

Такое будет у нас внутреннее представление гиперкуба. Так как мы делаем его не для реляционной базы данных, то в качестве полей связи значений измерений используются просто поля переменной длины (в РБД такое сделать мы бы не смогли, так как там количество колонок таблицы определено заранее).

3.2.2 Реализация гиперкуба

Можно было бы попытаться использовать для реализации гиперкуба набор временных таблиц, но этот метод обеспечит слишком низкое быстродействие (пример – набор компонент Decision Cube), поэтому будем использовать свои структуры хранения данных.

Для реализации гиперкуба нам необходимо использовать структуры данных, которые обеспечат максимальное быстродействие и минимальные расходы оперативной памяти. Очевидно, что основными у нас будут структуры для хранения словарей и таблицы фактов. Рассмотрим задачи, которые должен выполнять словарь с максимальной скоростью:

- проверка наличия элемента в словаре;

- добавление элемента в словарь;

- поиск номеров записей, имеющих конкретное значение             координаты;

- поиск координаты по значению измерения;

- поиск значения измерения по его координате.

Для реализации этих требований можно использовать различные типы и структуры данных. Например, можно использовать массивы структур. В реальном случае к этим массивам необходимы дополнительные механизмы индексации, которые позволят повысить скорость загрузки данных и получения информации.

Для оптимизации работы гиперкуба необходимо определить то, какие задачи необходимо решать в первоочередном порядке, и по каким критериям нам надо добиваться повышения качества работы. Главным для нас является повышение скорости работы программы, при этом желательно, чтобы требовался не очень большой объем оперативной памяти. Повышение быстродействия возможно за счет введения дополнительных механизмов доступа к данным, например, введение индексирования. К сожалению, это повышает накладные расходы оперативной памяти. Поэтому определим, какие операции нам необходимо выполнять с наибольшей скоростью. Для этого рассмотрим отдельные компоненты, реализующие гиперкуб. Эти компоненты имеют два основных типа – измерение и таблица фактов. Для измерения типовой задачей будет:

- добавление нового значения;

- определение координаты по значению измерения;

- определение значения по координате.

При добавлении нового значения элемента нам необходимо проверить, есть ли у нас уже такое значение, и если есть, то не добавлять новое, а использовать имеющуюся координату, в противном случае необходимо добавить новый элемент и определить его координату. Для этого необходим способ быстрого поиска наличия нужного элемента (кроме того, такая задача возникает и при определении координаты по значению элемента). Для этого оптимальным будет использование хеширование. При этом оптимальной структурой будет использование хеш-деревьев, в которых будем хранить ссылки на элементы. При этом элементами будут строки словаря измерения. Тогда структуру значения измерения можно представить следующим образом:

PFactLink = ^TFactLink;

TFactLink = record
    FactNo: integer; // индекс факта в таблице
    Next: PFactLink; // ссылка на следующий элемент
End;

TDimensionRecord = record
    Value: string; // значение измерения
    Index: integer; // значение координаты
    FactLink: PFactLink; // указатель на начало списка элементов таблицы фактов
End;

И в хеш-дереве будем хранить ссылки на уникальные элементы. Кроме того, нам необходимо решить задачу обратного преобразования – по координате определить значение измерения. Для обеспечения максимальной производительности надо использовать прямую адресацию. Поэтому можно использовать еще один массив, индекс в котором является координатой измерения, а значение – ссылка на соответствующую запись в словаре. Однако можно поступить проще (и сэкономить при этом на памяти), если соответствующим образом упорядочить массив элементов так, чтобы индекс элемента и был его координатой.

Организация же массива, реализующего список фактов, не представляет особых проблем ввиду его простой структуры. Единственное замечание будет такое, что желательно рассчитывать все способы агрегации, которые могут понадобиться, и которые можно рассчитывать инкрементно (например, сумма).

3.3 Построение срезов куба

Итак, мы описали способ хранения данных в виде гиперкуба. Он позволяет сформировать набор точек в многомерном пространстве на основе информации, находящейся в хранилище данных. Для того, чтобы человек мог иметь возможность работы с этими данными, их необходимо представить в виде, удобном для обработки. При этом в качестве основных видов представления данных используются сводная таблица и графики. Причем оба этих способа фактически представляют собой проекции гиперкуба. Для того, чтобы обеспечить максимальную эффективность при построения представлений, будем отталкиваться от того, что представляют собой эти проекции. Начнем рассмотрение со сводной таблицы, как с наиболее важной для анализа данных.

Найдем способы реализации такой структуры. Можно выделить три части, из которых состоит сводная таблица: это заголовки строк, заголовки столбцов и собственно таблица агрегированных значений фактов. Самым простым способом представления таблицы фактов будет использование двумерного массива, размерность которого можно определить, построив заголовки. К сожалению, самый простой способ будет самым неэффективным, потому что таблица будет сильно разреженной, и память будет расходоваться крайне неэффективно, в результате чего можно будет строить только очень малые кубы, так как иначе памяти может не хватить. Таким образом, нам необходимо подобрать для хранения информации такую структуру данных, которая обеспечит максимальную скорость поиска/добавления нового элемента и в то же время минимальный расход оперативной памяти. Этой структурой будут являться так называемые разреженные матрицы, про которые более подробно можно прочесть у Кнута. Возможны различные способы организации матрицы. Для того, чтобы выбрать подходящий нам вариант, рассмотрим изначально структуру заголовков таблицы.

Заголовки имеют четкую иерархическую структуру, поэтому естественно будет предположить для их хранения использовать дерево. При этом схематически структуру узла дерева можно изобразить следующим образом:

Родительский узел

Значение измерения

N (Количество дочерних узлов)

Столбец (строка) со значением

Дочерний узел 1

Дочерний узел 2

...

Дочерний узел N

Рисунок 3. Схематическое изображение структуры узла дерева

При этом в качестве значения измерения логично хранить ссылку на соответствующий элемент таблицы измерений многомерного куба. Это позволит сократить затраты памяти для хранения среза и ускорить работу. В качестве родительских и дочерних узлов также используются ссылки.

Для добавления элемента в дерево необходимо иметь информацию о его местоположении в гиперкубе. В качестве такой информации надо использовать его координату, которая хранится в словаре значений измерения. Рассмотрим схему добавления элемента в дерево заголовков сводной таблицы. При этом в качестве исходной информации используем значения координат измерений. Порядок, в котором эти измерения перечислены, определяется требуемым способом агрегирования и совпадает с уровнями иерархии дерева заголовков. В результате работы необходимо получить список столбцов или строк сводной таблицы, в которые необходимо осуществить добавление элемента.

Рисунок 4. Схематичное изображение сводной таблицы

В качестве исходных данных для определения этой структуры используем координаты измерений. Кроме того, для определенности, будем считать, что мы определяем интересующий нас столбец в матрице (как будем определять строку рассмотрим чуть позже, так как там удобнее применять другие структуры данных, причина такого выбора также см. ниже). В качестве координат возьмем целые числа – номера значений измерений, которые можно определить так, как описано выше.

Итак, после выполнения этой процедуры получим массив ссылок на столбцы разреженной матрицы. Теперь необходимо выполнить все необходимые действия со строками. Для этого внутри каждого столбца необходимо найти нужный элемент и добавить туда соответствующее значение. Для каждого из измерений в коллекции необходимо знать количество уникальных значений и собственно набор этих значений.

Теперь рассмотрим, в каком виде необходимо представить значения внутри столбцов – то есть как определить требуемую строку. Для этого можно использовать несколько подходов. Самым простым было бы представить каждый столбец в виде вектора, но так как он будет сильно разреженным, то память будет расходоваться крайне неэффективно. Чтобы избежать этого, применим структуры данных, которые обеспечат большую эффективность представления разреженных одномерных массивов (векторов). Самой простой из них будет обычный список, одно- или двусвязный, однако он неэкономичен с точки зрения доступа к элементам. Поэтому будем использовать дерево, которое обеспечит более быстрый доступ к элементам. Например, можно использовать точно такое же дерево, как и для столбцов, но тогда пришлось бы для каждого столбца заводить свое собственное дерево, что приведет к значительным накладным расходам памяти и времени обработки. Поступим чуть хитрее – заведем одно дерево для хранения всех используемых в строках комбинаций измерений, которое будет идентично вышеописанному, но его элементами будут не указатели на строки (которых нет как таковых), а их индексы, причем сами значения индексов нас не интересуют и используются только как уникальные ключи. Затем эти ключи будем использовать для поиска нужного элемента внутри столбца. Сами же столбцы проще всего представить в виде обычного двоичного дерева. Графически полученную структуру можно представить следующим образом:

Схема 9. Изображение сводной таблицы в виде двоичного дерева

Для определения соответствующих номеров строк можно использовать такую же процедуру, что и описанная выше процедура определения столбцов сводной таблицы. При этом номера строк являются уникальными в пределах одной сводной таблицы и идентифицируют элементы в векторах, являющихся столбцами сводной таблицы. Наиболее простым вариантом генерации этих номеров будет ведение счетчика и инкремент его на единицу при добавлении нового элемента в дерево заголовков строк. Сами эти вектора столбцов проще всего хранить в виде двоичных деревьев, где в качестве ключа используется значение номера строки. Кроме того, возможно также и использование хеш-таблиц. Так как процедуры работы с этими деревьями детально рассмотрены в других источниках, то останавливаться на этом не будем и рассмотрим общую схему добавления элемента в столбец.

В обобщенном виде последовательность действий для добавления элемента в матрицу можно описать следующим образом:

  1.  Определить номера строк, в которые добавляются элементы
  2.  Определить набор столбцов, в которые добавляются элементы
  3.  Для всех столбцов найти элементы с нужными номерами строк и добавить к ним текущий элемент (добавление включает в себя подсоединение нужного количества значений фактов и вычисление агрегированных значений, которые можно определить инкрементально).

После выполнения этого алгоритма получим матрицу, представляющую собой сводную таблицу, которую нам было необходимо построить.

Теперь пара слов про фильтрацию при построении среза. Проще всего ее осуществить как раз на этапе построения матрицы, так как на этом этапе имеется доступ ко всем требуемым полям, и, кроме того, осуществляется агрегация значений. При этом, во время получения записи из кэша, проверяется ее соответствие условиям фильтрации, и в случае его несоблюдения запись отбрасывается.

Так как описанная выше структура полностью описывает сводную таблицу, то задача ее визуализации будет тривиальна. При этом можно использовать стандартные компоненты таблицы, которые имеются практически во всех средствах программирования под Windows.

3.4 Реализации OLAP

3.4.1 Хорошо известные OLAP-продукты

Первым продуктом, выполняющим OLAP-запросы, был Express (компания IRI). Однако, сам термин OLAP был предложен Эдгаром Коддом, «отцом реляционных БД». А работа Кодда финансировалась Arbor, компанией, выпустившей свой собственный OLAP-продукт — Essbase (позже купленный Hyperion, которая в 2007 г. была поглощена компанией Oracle) — годом ранее. Другие хорошо известные OLAP-продукты включают Microsoft Analysis Services (ранее называвшиеся OLAP Services, часть SQL Server), Oracle OLAP Option, DB2 OLAP Server от IBM (фактически, EssBase с дополнениями от IBM), SAP BW, продукты Brio, BusinessObjects, Cognos, MicroStrategy и других производителей.

C технической точки зрения, представленные на рынке продукты делятся на "физический OLAP" и "виртуальный". В первом случае наличествует программа, выполняющая предварительный расчет агрегатов, которые затем сохраняются в специальную многомерную БД, обеспечивающую быстрое извлечение. Примеры таких продуктов - Microsoft Analysis Services, Oracle OLAP Option, Oracle/Hyperion EssBase, Cognos PowerPlay. Во втором случае данные хранятся в реляционных СУБД, а агрегаты могут не существовать вообще или создаваться по первому запросу в СУБД или кэше аналитического ПО. Примеры таких продуктов - SAP BW, BusinessObjects, Microstrategy. Системы, имеющие в своей основе "физический OLAP" обеспечивают стабильно лучшее время отклика на запросы, чем системы "виртуальный OLAP". Поставщики систем "виртуальный OLAP" заявляют о большей масштабируемости их продуктов в плане поддержки очень больших объемов данных.

3.4.2 Deductor

В настоящей работе мне хотелось бы подробнее рассмотреть продукт компании BaseGroup Labs – Deductor.

Deductor является аналитической платформой, т.е. основой для создания законченных прикладных решений. Реализованные в Deductor технологии позволяют на базе единой архитектуры пройти все этапы построения аналитической системы: от создания хранилища данных до автоматического подбора моделей и визуализации полученных результатов.

Состав системы:

1. Studio

Deductor Studio – аналитическое ядро платформы Deductor. В Deductor Studio включен полный набор механизмов, позволяющий получить информацию из произвольного источника данных, провести весь цикл обработки (очистка, трансформация данных, построение моделей), отобразить полученные результаты наиболее удобным образом (OLAP, таблицы, диаграммы, деревья решений...) и экспортировать результаты.  

2. Viewer

Deductor Viewer является рабочим местом конечного пользователя. Программа позволяет минимизировать требования к персоналу, т.к. все требуемые операции выполняются автоматически при помощи подготовленных ранее сценариев обработки, нет необходимости задумываться о способе получения данных и механизмах их обработки. Пользователю Deduсtor Viewer необходимо только выбрать интересующий отчет.  

3 Warehouse

Deductor Warehouse – многомерное кросс-платформенное хранилище данных, аккумулирующее всю необходимую для анализа предметной области информацию. Использование единого хранилища позволяет обеспечить удобный доступ, высокую скорость обработки, непротиворечивость информации, централизованное хранение и автоматическую поддержку всего процесса анализа данных. 

4. Client-Server

Deductor Server предназначен для удаленной аналитической обработки. Он предоставляет возможность как автоматически 'прогонять' данные через существующие сценарии на сервере, так и переобучать имеющиеся модели. Использование Deductor Server позволяет реализовать полноценную трехзвенную архитектуру, в которой он выполняет функцию сервера приложений. Доступ к серверу обсепечивается при помощи Deductor Client.  

Принципы работы:

1. Импорт данных

Анализ любой информации в Deductor начинается с импорта данных. В результате импорта данные приводятся к виду, пригодному для последующего анализа при помощи всех имеющихся в программе механизмов. Природа данных, формат, СУБД и прочее не имеют значения, т.к. механизмы работы со всеми унифицированы.  

2. Экспорт данных

Наличие механизмов экспорта позволяет пересылать полученные результаты в сторонние приложения, например, передавать прогноз продаж в систему для формирования заказа на поставку или разместить подготовленный отчет на корпоративном web-сайте.  

3. Обработка данных

Под обработкой в Deductor подразумевается любое действие, связанное с неким преобразованием данных, например, фильтрация, построение модели, очистка и прочее. Собственно в этом блоке и производятся самые важные с точки зрения анализа действия. Наиболее существенной особенностью механизмов обработки, реализованных в Deductor, является то, что полученные в результате обработки данные можно опять обрабатывать любым из доступных системе методов. Таким образом, можно строить сколь угодно сложные сценарии обработки.  

4. Визуализация

Визуализировать данные в Deductor Studio (Viewer) можно на любом этапе обработки. Система самостоятельно определяет, каким способом она может это сделать, например, если будет обучена нейронная сеть, то помимо таблиц и диаграмм, можно просмотреть граф нейросети. Пользователю необходимо выбрать нужный вариант из списка и настроить несколько параметров.  

5. Механизмы интеграции

В Deductor не предусмотрено средств ввода данных – платформа ориентирована исключительно на аналитическую обработку. Для использования информации, хранящейся в разнородных системах, предусмотрены гибкие механизмы импорта-экспорта. Взаимодействие может быть организовано при помощи пакетного выполнения, работы в режиме OLE сервера и обращения к Deductor Server.  

6.Тиражирование знаний

Deductor позволяет реализовать одну из наиболее важных функций любой аналитической системы - поддержку процесса тиражирования знаний, т.е. обеспечение возможности сотрудникам, не разбирающимся в методиках анализа и способах получения того или иного результата, получать ответ на основе моделей подготовленных экспертом.  

ЗАКЛЮЧЕНИЕ

OLAP-технологии – это мощный инструмент обработки данных в реальном времени. OLAP-сервер позволяет организовывать и представлять данные в разрезе различных аналитических направлений и превращает данные в ценную информацию, которая помогает компаниям принимать более обоснованные решения.

Использование OLAP-систем обеспечивает стабильно высокий уровень производительности и масштабируемости, поддерживая объемы данных размером в несколько гигабайт, доступ к которым могут получить тысячи пользователей. С помощью OLAP-технологий доступ к информации осуществляется в реальном времени, т.е. обработка запросов теперь не замедляет процесс анализа, обеспечивая его оперативность и эффективность. Визуальные инструменты администрирования позволяют разрабатывать и внедрять даже самые сложные аналитические приложения, делая этот процесс простым и быстрым.

Обеспечивая среду для анализа, OLAP-сервер позволяет организациям использовать данные из ERP и CRM-систем, существующих хранилищ данных и других источников, а также обеспечивает тесную интеграцию с целым рядом систем, что позволяет существенно снизить расходы организации на развертывание, внедрение и сопровождение аналитических приложений.

OLAP-система предоставляет пользователям возможность проводить сложный анализ данных, что позволяет лучше понять принципы функционирования компании и найти способы улучшения результатов ее деятельности. Аналитические приложения, построенные на основе OLAP-технологий , позволяют решать целый спектр аналитических задач, таких как анализ производства, финансовый анализ, маркетинговые исследования, анализ электронного бизнеса, CRM-анализ, анализ трудовых ресурсов (HRM-анализ). OLAP дает возможность создания аналитических приложений, охватывающих анализ всего производственного и финансового цикла предприятия, при этом не возникнет проблем с преемственностью и сопоставимостью данных.

СПИСОК ИСТОЧНИКОВ

  1.  Fast Track to MDX. Mark Whitehorn, Robert Zare, Mosha Pasumansky
  2.  http://www.basegroup.ru/library/ - библиотека сайта BaseGroupLabs
  3.  Foundations of Decision Support Systems. Bonczek, R. H., C. W. Holsapple, and A. Whinston. Academic Press, 2001.
  4.  Building Effective Decision Support Systems. Englewood Cliffs, N.J. Sprague, R. H. and E. D. Carlson. — Prentice-Hall, Inc., 1998.
  5.  Intelligent Decision Support Methods: The Science of Knowledge. Upper Saddle River, NJ. Dhar, V. & Stein, R., — Prentice-Hall, 1997
  6.  Корпоративные хранилища данных. Планирование, разработка и реализация. Том первый. Эрик Спирли - Издательство: Вильямс, 400 стр, 2003
  7.  Хранилища данных. С. Я. Архипенков, Д. В. Голубев, О. Б. Максименко - Издательство: Диалог-МИФИ, 2002 г.
  8.  Методы и модели анализа данных: OLAP и Data Mining. А.А. Барсегян, М.С. Куприянов, В.В. Степаненко, И.И. Холод - Издательство: БХВ-Петербург, 2004 г.

PAGE   \* MERGEFORMAT 3

Другие работы

ВСТУП Природною рушійною силою господарського...


Умови ринкової економіки та економічна конкуренція змушують підприємство займатися господарською діяльністю ефективніше і наполегливіше стежити ...

Подробнее ...

консервативной революции в США Рейган уже зас...


Никонов Сороковой президент США Рональд Рейган человек весьма необычной для главы американского правительства судьбы. Киноактер ставший крупнейш...

Подробнее ...

.ЦЕЛЬ РАБОТЫ Целью работы является- Изучение ...


ЦЕЛЬ РАБОТЫ Целью работы является: Изучение назначения и принципа работы инвертора напряжения 2. СВЕДЕНИЯ НЕОБХОДИМЫЕ ДЛЯ ВЫПОЛНЕНИЯ РАБОТЫ Преоб...

Подробнее ...

д. Как правило они были членами коммунистиче...


Как правило они были членами коммунистической партии но есть и исключения вроде Патриарха Московского и всея Руси который состоял в номенклатуре...

Подробнее ...