КОНСПЕКТ ЛЕКЦИЙ БИОЛОГИЧЕСКАЯ ХИМИЯ для студентов специальностей 49 01 01 49 01 02 91 01 01 ЛИПИДЫ И ИХ ОБМЕН



Бесплатно
Узнать стоимость работы
Рассчитаем за 1 минуту, онлайн
Работа добавлена на сайт TXTRef.ru: 2019-04-13

PAGE  4

Министерство образования Республики Беларусь

Учреждение образования

МОГИЛЕВСКИЙ ГОСУДАРСТВЕННЫЙ

УНИВЕРСИТЕТ ПРОДОВОЛЬСТВИЯ

Кафедра химической технологии

высокомолекулярных соединений

КОНСПЕКТ ЛЕКЦИЙ

БИОЛОГИЧЕСКАЯ ХИМИЯ

для студентов специальностей

49 01 01, 49 01 02, 91 01 01

ЛИПИДЫ И ИХ ОБМЕН

Могилев 2005


УДК 577.15.820

Рассмотрен и рекомендован к изданию кафедрой

химической технологии высокомолекулярных соединений

Протокол №  __ от ___________ 2005 г.

Рассмотрен и рекомендован к изданию секцией выпускающих кафедр

Протокол №  _ от  ____________2005 г.

Составитель     доцент Макасеева О.Н.,

     ст. преподаватель  Ткаченко Л.М.

Оформление

графического материала   

Рецензент      доцент

УО «Могилевский государственный университет продовольствия»

Содержание

1 Липиды

1.1 Общие признаки, функции, классификация.

1.2 Жирные кислоты

1.3 Омыляемые липиды

1.3.1 Простые липиды

1.3.1.1 Триацилглицеролы (жиры)

1.3.1.2 Воски

1.4 Прогоркание жиров

1.5 Сложные липиды

1.5.1 Фосфолипиды

1.5.1.1 Глицерофосфолипиды

1.5.1.2 Сфингофосфолипиды

1.5.2 Гликолипиды

1.6 Неомыляемые липиды

1.6.1 Терпены

1.6.2 Стероиды

1.7 Биологические мембраны

2 Метаболизм жиров

           2.1 Переваривание и всасывание жиров

         2.2 Окисление жиров

         2.2.1 Окисление глицерина

2.2.2 Окисление жирных кислот

2.3 Синтез жира

3 Метаболизм фосфолипидов

3.1  Распад (катаболизм) фосфолипидов

3.2 Синтез фосфолипидов


1 Липиды

1.1 Общие признаки, функции, классификация

Липиды ( от греч. lipos – жир ) представляют собой группу природных органических соединений, различающихся по своей химической структуре и функциям. Однако, они характеризуются следующими общими признаками: нерастворимостью в воде, растворимостью в органических растворителях (эфире, хлороформе, бензоле), содержанием высших жирных кислот и гидрофобностью. Многие липиды, однако, содержат как минимум одну полярную группу, которая может служить местом связывания с другими компонентами.

В организме липиды выполняют пять основных функции:

1.Энергетическая. Являются резервными соединениями, основной формой запасания энергии и углерода. При окислении 1г нейтральных жиров (триацилглицеролов) выделяется около 38 кДж энергии.

2. Защитная. Липиды (воски) образуют защитные водоотталкивающие покровы растений, их семян и плодов, и термоизоляционные прослойки у животных организмов.

3. Структурная. Являются главными структурными компонентами клеточных мембран.

4. Поставщик метаболитов–липиды служат предшественниками ряда других биологически активных веществ–витамина Д, стероидных гормонов, желчных кислот, каротиноидов, стеролов и т.д.

5. Регуляторная: 1) производными жирных кислот являются простоглондины–гормоны местного действия. От свойств и структуры мембранных липидов во многом зависит активность мембраносвязанных ферментов; 2) липидами являются жирорастворимые витамины и провитамины (каротины, стеролы), обладая высокой биологической активностью, эти вещества оказывают регулирующее влияние на обмен веществ.

Существует несколько классификаций липидов. Наибольшее распространение получила классификация, основанная на структурных особенностях липидов и их способности к гидролизу.

Липиды извлекают из любого растительного материала в виде сложной смеси, и в зависимости от способов и приемов экстрагирования, вида растворителя, различают следующие группы липидов (рисунок 1).

1. Свободные липиды, извлекаемые неполярными безводными растворителями (чаще всего используют диэтиловый эфир). При этом в эфирный экстракт переходит не только собственно жир, но и примесь к нему других липидов: свободных высших жирных кислот, высших спиртов, фосфатидов, стеролов, восков, хлорофилла, каротиноидов, жирорастворимых витаминов, т. е. в экстракте находится так называемый сырой жир. В настоящее время принято сырой жир, т.е. все липиды, перешедшие в экстракт диэтилового эфира, называть свободными липидами. Для количественного определения сырого жира используют аппарат Сокслета (см. лаб. практикум).

2. Связанные липиды. Часть липидов может быть связана с белками (липопротеины) и углеводами (гликопротеины). Это вещества извлекаются гидрофильн

ными полярными растворителями или их смесями (хлороформ, этанол, ацетон),

Рисунок 1 – Классификация липидов

которые разрушают непрочные белково-липидные и гликолипидные соединения.

3. Прочносвязанные липиды, извлекаемые после  обработки растительного материала спиртовым раствором  щелочи при кипячении для разрушения прочных комплексов липидов с нелипидными соединениями; при этом происходит гидролиз и омыление липидов щелочью.

Состав свободных и связанных липидов неодинаков. Основная фракция свободных липидов - триацилглицеролы (60-70%), а связанных - фракции полярных липидов (фосфолипидов) от 30% до 40%.

1.2 Жирные кислоты

В природе обнаружено свыше 200 жирных кислот, однако более  100 различных жирных кислот идентифицированы в липидах микроорганизмов, растений и животных.

Жирные кислоты – алифатические карбоновые кислоты - в организме могут находиться как в свободном состоянии, либо выполнять роль строительных блоков для большинства классов липидов (рисунок 2).

Все жирные кислоты, входящие в состав жиров, делят на две группы: насыщенные и ненасыщенные, содержащие ненасыщенные жирные кислоты, имеющие две и более двойных связи называют полиненасыщенными.

Природные жирные кислоты весьма разнообразны, однако имеют ряд общих черт:

- это монокарбоновые  кислоты, содержащие линейные углеводородные цепи;

- почти все они содержат четное число атомов углерода от 14 до 22, чаще всего встречаются с 16 или 18 атомами углерода;

- содержание ненасыщенных жирных кислот в липидах, как правило, выше, чем насыщенных. Двойные связи почти всех природных жирных кислот имеют цис-конфигурацию;

 

Рисунок 2 – Основная структура и номенклатура жирных кислот

- высшие жирные кислоты практически нерастворимы  в воде, но их натриевые или калиевые соли, называемые мылами, образуют в воде мицеллы, стабилизируемые за счет гидрофобных взаимодействий. Мыла обладают свойствами поверхностно-активных веществ.

Жирные кислоты отличаются:

- длиной их углеводородного хвоста, степенью их ненасыщенности и положением двойных связей в цепях жирных кислот;

- физическими свойствами. Обычно насыщенные жирные кислоты при температуре 22С имеют твердую консистенцию, тогда как ненасыщенные представляют собой масла. Ненасыщенные жирные кислоты имеют более низкую температуру плавления;

- структурной конфигурацией. В насыщенных жирных кислотах углеводородный хвост, в принципе может принимать бесчисленное множество конфигураций вследствие полной свободы вращения вокруг одинарной связи; однако, наиболее вероятной является вытянутая форма, поскольку она энергетически наиболее выгодна. В ненасыщенных кислотах наблюдается иная картина: невозможность вращения вокруг двойной связи (или связей) обусловливает жесткий изгиб углеводородной цепи. В природных жирных кислотах двойная связь, находясь в цис-конфигурации, дает изгиб цепи под углом приблизительно 30. В жирных кислотах с несколькими двойными связями цис-конфигурация придает углеродной цепи изогнутый и укороченный вид.

– химическими свойствами. Полиненасыщенные жирные кислоты быстро окисляются на открытом воздухе. Кислород реагирует с двойными связями с образованием пероксидов и свободных радикалов. Ненасыщенные жирные кислоты участвуют в реакциях присоединения по двойным связям, к ним легко присоединяются галогены.

В таблице 1 приведены некоторые наиболее важные природные жирные кислоты.

В высших растениях присутствуют в основном пальмитиновая кислота и две ненасыщенные кислоты - олеиновая и линолевая.

Таблица 1 – Основные карбоновые кислоты, входящие в состав масел и жиров

Число

С-атомов

Число двойных связей

Наименование кислоты

Структурная формула

Насыщенные

12

14

16

18

20

22

0

0

0

0

0

0

Лауриновая

Миристиновая

Пальмитиновая

Стеариновая

Арахиновая

СН3-(СН2)10-СООН

СН3-(СН2)12-СООН

СН3-(СН2)14-СООН

СН3-(СН2)16-СООН

СН3-(СН2)18-СООН

СН3-(СН2)20-СООН

Ненасыщенные

18

18

18

20

1

2

3

4

Олеиновая

Линолевая

Линоленовая

Арахидовая

СН3-(СН2)7-СН=СН-(СН2)7-СООН

СН3-(СН2)4-(СН=СН-СН2)2-(СН2)6-СООН

СН3-СН2-(СН=СН-СН2)3-(СН2)6-СООН

СН3-(СН2)4-(СН=СН-СН2)-(СН2)2-СООН

Стеариновая кислота в растениях почти не встречается, а содержится в значительном количестве (25% и более) в некоторых твердых животных жирах (жир баранов и быков) и маслах тропических растений (кокосовое масло). Лауриновой кислоты много в лавровом листе, миристиновой – в масле мускатного ореха, арахиновой и бегеновой – в арахисовом и соевом маслах. Полиненасыщенные жирные кислоты - линоленовая и линолевая - составляют главную часть льняного, конопляного, подсолнечного, хлопкового и некоторых других растительных масел. Доля ненасыщенных жирных кислот в составе растительных жиров очень высока (до 90%), а из предельных лишь пальмитиновая кислота содержится в них в количестве 10-15%.

В организме человека и животных не могут синтезироваться такие важные кислоты, как линолевая, линоленовая и арахидоновая, и должны поступать в организм с пищей. Эти три кислоты получили название незаменимых жирных кислот. Комплекс этих кислот получил название витамина F. При длительном отсутствии в пище у животных наблюдается отставание  в росте, сухость и шелушение кожи, выпадение шерсти. Описаны случаи недостаточности незаменимых жирных кислот и у человека. Так, у детей грудного возраста, получающих искусственное питание с незначительным содержанием жиров, может развиться чешуйчатый дерматит.

Механизм действия витамина F неизвестен, но установлено, что он участвует в регуляции обмена липидов; способствует выведению из организма холестерина, предупреждая и ослабляя атеросклероз; также оказывает благотворное влияние на стенки кровеносных сосудов, повышая их эластичность; являются (в частности арахидоновая кислота) предшественником гормонов - простагландинов, оказывающих влияние на обмен веществ, в частности, ряд простагландинов влияет на деятельность гладких мышц сосудов, в связи с чем их используют для лечения гипертонии, облегчения родов и т. д. Растительные масла не содержат арахидоновой кислоты. Она присутствует в продуктах животного происхождения  (яйца, сердце, почки и т. д.) Ежедневно человеку необходимо потреблять в среднем 20-25 г растительного масла и 55-60 г животного.

Масла некоторых растений содержат значительное количество специфических жирных кислот, характерных именно для данных растений. В маслах из семян крестоцветных растений - рапса и горчицы содержится от 42 до 55 % ненасыщенной эруковой кислоты:

СН3-(СН2)7-СН=СН-(СН2)11-СООН

Масло клещевины содержит рицинолевую кислоту - оксикислоту, имеющую  гидроксильную группу у 12-го углеродного атома:

СН3-(СН2)5-СН-СН2-СН=СН -(СН2)7-СООН

                                                   

                                                  ОН  

 1.3 Омыляемые липиды

Простые и сложные липиды легко омыляются. При действии кислот и щелочей  на них происходит расщепление сложноэфирной  связи – омыление жира. При этом выделяются свободный спирт и свободные жирные кислоты или их соли, называемые мылами. Употребляемое мыло состоит в основном из калиевых и натриевых солей жирных кислот.

 1.3.1 Простые липиды

Простые липиды – соединения, состоящие только из жирных кислот и спиртов. Они делятся на две группы: 1) нейтральные ацилглицеролы и 2) воски.  

1.3.1.1 Триацилглицеролы (жиры)

Нейтральные ацилглицеролы представляют собой сложные эфиры трехатомного спирта глицерина и высших жирных кислот. Простые ацилглицеролы не содержат ионных групп, являются нейтральными липидами, относятся к L-ряду.

Если жирными кислотами этерифицированы все три гидроксильные группы глицерина, то такое соединение называют триацилглицеролом (триглицерид), если две – диацилглицеролом (диглицерид) и, наконец, если этерифицирована одна группа – моноацилглицеролы( моноглицерид).

Триацилглицеролы различаются природой и расположением трех остатков жирных кислот. В зависимости от типа остатков жирных кислот, нейтральные жиры делятся на простые и смешанные. Если во всех трех положениях стоят остатки одной и той же жирной кислоты, то их относят к простым триацилглицеролам, название которых определяется наванием сответствующей жирной кислоты (например, трипальмитин, тристеарин, триолеин и т.д.)  если остатки разных жирных кислот, то их относят к смешанным триацилглицеролам (например, 1-олео-2-пальмито-3-стеарин).

Нейтральные ацилглицеролы служат главными составными частями природных жиров и масел, чаще всего это смешанные триацилглицеролы. По происхождению природные  жиры делят на животные и растительные. Растительные жиры обычно называют маслами. В зависимости от жирно-кислотного состава жиры и масла по консистенции бывают жидкими и твердыми. Животные жиры (баранье, говяжье, свиное сало, молочный жир) обычно содержит значительное количество насыщенных жирных кислот (пальмитиновой, стеариновой и др.), благодаря чему при комнатной  температуре они твердые.

Жиры, в состав которых входит много ненасыщенных кислот (олеиновая, линолевая, линоленовая и др.), при обычной температуре жидкие  и называются  маслами.

Жиры, как правило, содержаться в животных тканях, масла - в плодах и семенах растений. Особенно высоко содержание масел (20-60 %) в семенах подсолнечника, хлопчатника, сои, льна. Семена этих культур используются в пищевой промышленности для получения пищевых масел.

По способам высыхать на воздухе масла подразделяются на высыхающие (льняное, конопляное), полувысыхающие (подсолнечное, кукурузное), невысыхающие (оливковое, касторовое). Это свойство масел определяется их  жирно - кислотным составом.

Триацилглицеролы способны вступать во все химические реакции, свойственные сложным эфирам. Наибольшее значение имеет реакция омыления, она может происходить как при ферментативном гидролизе, так и при действии кислот и щелочей. Жидкие растительные масла превращают в твердые жиры при помощи гидрогенизации. Этот процесс широко используется для изготовления маргарина и кулинарного жира.

Жиры при сильном и продолжительном взбалтывании с водой образуют эмульсии – дисперсные системы с жидкой дисперсной фазой (жир) и жидкой дисперсионной средой (водой). Однако эти  эмульсии нестойки и быстро разделяются на два слоя – жир и воду. Жиры плавают над водой, поскольку их плотность меньше плотности воды (от 0,87 до 0,97).

Для получения стойких эмульсий жира в воде необходимо присутствие третьего вещества – эмульгатора, легко адсорбирующегося на поверхности раздела двух фаз. Молекула эмульгатора состоит из двух частей: из углеводородной цепи (гидрофобный хвост) и какой-либо полярной или ионной группы (гидрофильная головка). К таким соединениям относятся мыла, белки, фосфолипиды, соли желчных кислот. При взбалтывании жира с водой в присутствии эмульгатора происходит дробление жира на капли, на которых появляется тончайшая пленка, состоящая из адсорбированных молекул эмульгатора, гидрофобный конец которых погружен в капельку жира, а гидрофильный – в водную фазу  (см. рисунок 3).

Рисунок 3 – Схема действия эмульгатора

Таким образом, эмульгатор формирует  гидрофильную оболочку вокруг капель жира, образуя мелкодисперсную смесь с водой или эмульсию, которая приобретает свойство стабильности.

Эмульгирование имеет большое физиологическое значение при всасывании и усвоении организмом жиров, а также при образовании биологических мембран. Эмульсии широко используются в пищевой промышленности  (при приготовлении шоколада, майонеза, маргарина), мыловарении, при изготовлении косметических средств, в производстве красителей.

1.3.1.2 Воски

Это сложные эфиры  высших жирных кислот и высших одноатомных  спиртов жирного (реже ароматического ряда).

Воски являются твердыми соединениями с ярко выраженными гидрофобными свойствами. Природные воски содержат также некоторое количество свободных жирных кислот и высокомолекулярных спиртов. В состав восков входят как обычные, содержащиеся  в жирах, – пальмитиновая, стеариновая, олеиновая и др., так и жирные кислоты, характерные для восков, имеющие гораздо большие молекулярные массы, – карноубовая С24Н48О2, церотиновая С27Н54О2, монтановая С29Н58О2 и др.

Среди высокомолекулярных спиртов, входящих в состав восков, можно отметить цетиловый – СН3–(СН2)14–СН2ОН, цериловый – СН3–(СН2)24–СН2ОН, мирициловый СН3–(СН2)28–СН2ОН.

Воски встречаются как в животных, так и в растительных организмах и выполняют главным образом защитную функцию.

В растениях они покрывают  тонким слоем листья, стебли и плоды, тем самым, предохраняя их от смачивания водой, высыхания, механических повреждений и поражения микроорганизмами. Нарушение этого налета приводит к быстрой порче плодов при их хранении.

Например, значительное количество воска выделяется на поверхности листьев пальмы, произрастающей в Южной Америке. Этот воск, называемый карноубским, является в основном церотиново - мирициловым эфиром:

имеет желтый или зеленоватый цвет, очень тверд, плавится при температуре 83-900С, идет на выделку свечей.

Среди животных восков наибольшее значение имеет пчелиный воск, под его покровом хранится мед и развиваются личинки пчелы. В пчелином воске преобладает пальмитиново - мирициловый эфир:

 

а также высокое содержание высших жирных кислот и различных углеводородов, плавится пчелиный воск при температуре 62-700С.

Другими представителями воска животных является ланолин и спермацет. Ланолин предохраняет волосы и кожу от высыхания, очень много его содержится в овечьей шерсти.

Спермацет – воск, добывающий из спермацетового масла черепных полостей кашалота, состоит в основном (на 90%) из пальмитиново - цетилового эфира:

твердое вещество, его температура плавления 41-490С.

Различные воска широко применяют для изготовления свечей, помад, мыла, разных пластырей.

1.4 Прогоркание жира

При хранении растительные масла, животные жиры, а также жиросодержащие продукты (масличные жиры, мука, крупа, кондитерские изделия, мясные продукты) под влиянием кислорода воздуха, света, ферментов, влаги приобретают неприятный вкус и запах. Иными словами жир прогоркает.

Прогоркание жиров и жиросодержащих продуктов – результат сложных химических и биохимических процессов, протекающих в липидном комплексе.

В зависимости от характера основного процесса, протекающего при этом, различают гидролитическое и окислительное прогоркание, Каждый из них может быть разделен на автокаталитическое (неферментативное) и ферментативное (биохимическое) прогоркание.

При гидролитическом прогоркании происходит гидролиз жира с образованием глицерина и свободных жирных кислот.

Неферментативный гидролиз протекает с участием растворенной в жире воды и скорость гидролиза жира при обычных температурах невелика. Ферментативный гидролиз происходит при участии фермента липазы на поверхности соприкосновения жира и воды и возрастает при эмульгировании.

В результате гидролитического прогоркания увеличивается кислотность, появляется неприятный вкус и запах, особенно при  гидролизе жиров (молочного жира, кокосового и пальмового масел), содержащих низко- и среднемолекулярные кислоты, такие как масляную, валериановую, капроновую). Высокомолекулярные кислоты вкуса и запаха не имеют и повышение их содержания не приводит к уменьшению вкуса масел.

В семенах  растений содержится фермент триацилглицерол–липаза, она   особенно активна в семенах клещевины и сои. Участие этого фермента в гидролизе жира зерна и продуктов его переработки (мука, крупа, макароны) приводит к снижению их потребительских свойств и способности к длительному хранению.

Наиболее распространенным видом порчи жиров в процессе хранения является окислительное прогоркание. В первую очередь окислению подвергаются свободные, а не связанные в триацилглицеролах ненасыщенные жирные кислоты. Процесс окисления может происходить неферментативным и ферментативным  путями.

В результате неферментативного окисления кислород  присоединяется  к ненасыщенным жирным кислотам по месту двойной связи с образованием циклической перекиси, которая распадается с образованием альдегидов, придающих жиру неприятный запах и вкус:

Так же в основе неферментативного окислительного прогоркания лежат цепные радикальные процессы, в которых участвуют кислород и ненасыщенные жирные кислоты.

Под влиянием перекисей и гидроперекисей происходит дальнейший распад жирных кислот, также образуются альдегиды, кетоны и другие неприятные на вкус и запах вещества вследствие чего жир прогоркает.

При ферментативном окислении этот процесс катализируется ферментом липоксигеназой с образованием перекисей и гидроперекисей.

Специфичность этого фермента состоит в том, что действию фермента подвергаются лишь те полиненасыщенные жирные кислоты, которые содержат цис-цис-1,4-пентадиеновую группу (линолевая, линоленовая, арахидоновая). Процесс начинается с отщепления атома водорода у 3 атома углерода пентадиеновой группы жирной кислоты. Образовавшийся свободный радикал перемещается к 5-му атому углерода с одновременным перемещением двойной связи в сопряженное положение, которая при этом из цис-цис формы переходит в цис-транс изомер, в результате данного процесса идет образование гидроперекиси:

Жирные кислоты с цис-транс или транс-транс-конфигураций двойных связей ферментом не окисляется.

Липоксигеназа широко распространена в растительном жире. Она найдена в пшенице и других злаках, в семенах масличных и бобовых растений, особенно велико ее содержание в соевой муке. В результате действия этого фермента происходит прогоркание пищевых продуктов (муки, крупы, макарон и др.), образующиеся под воздействием гидроперекиси жирных кислот могут далее окислять ненасыщенные жирные кислоты, каротин, витамин А, аминокислоты и аскорбиновую кислоту. Таким образом снижается ценность продукта и изменяется цвет. В этом проявляется ее отрицательное действие.

Активность липоксигеназы необходимо учитывать в некоторых технологиях, т.к. она может влиять на потребительские свойства готового продукта.Например, при производстве макарон требуется специальная макаронная мука, вырабатываемая из твердых сортов пшеницы, с низкой активностью липоксигеназы в муке, получается бледные макароны, из-за окисления ею пигментов муки (каротиноидов, флавоноидов и т.д.). Потребительские свойства (цвет) таких макарон не высокие.

Поэтому при переработке сырья и выработке из него продуктов важны ингибиторы липоксигеназы, которые взаимодействуют с образующимися свободными радикалами. Эти ингибиторы прекращают процесс окисления, обрывая цепь превращений радикалов. Таким ингибитором является используемый в качестве антиоксиданта токоферол – витамин Е.

Липоксигеназа может выполнять и положительную роль. При слабом ее действии небольшие количества гидроперекисей жирных кислот (окисляя группы –SH в белках и образуя дисульфидные группы –SS–) «укрепляют» клейковину, ускоряют процесс «созревания» пшеничной муки, улучшает ее хлебопекарные достоинства.

Разработана технология выработки хлеба из слабой пшеничной муки с использованием липоксигеназы. К пшеничной муке добавляют соевую или гороховую муку (источник липоксигеназы) и растительное масло (источник ненасыщенных жирных кислот). В результате разностороннего действия фермента (укрепление клейковины и обесцвечивание пигментов муки) улучшается цвет мякиша (он становится светлее) и увеличивается объем.

Под действием ферментов липазы и липоксигеназы изменяется качество жиров и масел, которое характеризуется следующими показателями и числами:

Кислотное число (К.ч.) – это количество миллиграммов гидроксида калия, необходимого для нейтрализации свободных жирных кислот в 1 г жира.

При хранении масла наблюдается гидролиз триацилглицеролов, это приводит к накоплению свободных жирных кислот, т.е. возрастанию кислотности. Повышение К.ч. указывает на снижение его качества. Кислотное число является гостированным показателем масла или жира.

Йодное число – это количество граммов йода, присоединившемуся по месту двойных связей к 100 г жира:

 

Йодное число позволяет судить о степени насыщенности масла (жира), о склонности его к высыханию, прогорканию и другим изменениям, происходящим при хранении. Чем больше содержится в жире ненасыщенных жирных кислот, тем выше йодное число. Уменьшение йодного числа в процессе хранения масла является показателем его порчи.

Перекисное число (П.ч.) показывает количество перекисей в жире, выражают его в процентах йода, выделенного из йодистого калия перекисями, образовавшимися в 1 г жира.

В свежем жире перекиси отсутствуют, но при доступе воздуха они появляются сравнительно быстро. В процессе хранения перекисное число увеличивается.

Число омыления (Ч.о.) – это количество миллиграммов гидроксида калия , необходимое для нейтрализации свободных и омыления связанных с глицерином  жирных кислот в 1 г жира.

1.5 Сложные липиды

1.5.1 Фосфолипиды

Фосфолипиды являются структурными компонентами клеточных мембран и в небольшом количестве обнаружены в составе запасных отложений. Они легко  образуют комплексы с белками и в виде фосфолипопротеинов присутствуют во всех клетках живых существ.

Фосфолипиды найдены в животных и растительных организмах. Особенно много их содержится в нервных тканях, в сердце, печени животных. Много фосфолипидов в семенах растений, особенно в семенах масличных и бобовых культур.

Фосфолипиды – твердые вещества жироподобного вида; они бесцветны, но быстро темнеют на воздухе вследствие окисления ненасыщенных жирных кислот. Они хорошо растворимы в большинстве неполярных органических растворителей (бензол, хлороформ, петролейный эфир) и масле. В воде они не растворимы, но могут образовывать эмульсии или коллоидные растворы.

Фосфолипиды – сложные эфиры многоатомных спиртов с высшими жирными кислотами, содержащие в качестве добавочных групп остатки фосфорной кислоты и азотистых оснований.

Из многоатомных спиртов в составе различных фосфолипидов найдены глицерин, миоинозит и сфингозин.

В соответствии с этим фосфолипиды делят на три группы: глицерофосфолипиды, ионозитфосфолипиды и сфингофосфолипиды. В качестве высших жирных кислот в молекулах фосфолипидов содержится пальмитиновая, стеариновая, линолевая, линоленовая  и арахидоновая кислоты.

Наиболее распространенными в природе являются глицерофосфолипиды и сфингофосфолипиды.

1.5.1.1 Глицерофосфолипиды

Глицерофосфолипиды являются производными фосфатидной кислоты. В их состав входят глицерин, жирные кислоты, фосфорная кислота и обычно азотсодержащее соединение. Общая формула глицерофосфолипидов выглядит так:

В этих формулах R1 и  R2 – радикалы высших жирных кислот (как правило, R2–это ненасыщенная жирная кислота), а  В – радикал азотистого основания.

В зависимости от характера  азотистого основания среди фосфотидов различают фосфотидилхолины (лецитины), если фосфорная  кислота соединена эфирной связью с азотистым основанием  – холином [НО–СН2–СН2N+(CН3)3]; фосфатидилэтаноламины (кефалины), если азотистым основанием служит этаноламин (HO-CH2-CH2-H3N+); фосфатидилсерины, если азотистым основанием является аминокислота серин (HO-CH2-CH-H3N+):

        |

         СОО-

 

Три первых вида азотосодержащих фосфатидов могут переходить друг в друга, т. к. они отличаются лишь строением азотистых оснований, между которыми возможна, например, такая генетическая связь:

В состав некоторых глицерофосфолипидов вместо азотосодеращих соединений входит не содержащий азота шестиуглеродный циклический спирт инозит, названный также инозитолом. Эти липиды называются инозитфосфолипиды или фосфатидилинозитолами:

Фосфотидилинозитолы обнаружены у животных, растений и микроорганизмах. В животном организме найдены в мозге, печени и легких.

1.5.1.2 Сфингофосфолипиды

Особую группу составляют фосфолипиды, у которых вместо глицерина содержится  аминоспирт сфингозин, такие фосфолипиды называются сфингофосфолипидами. К наиболее распространенным сфинголипидам относят сфингомиелин.

В основном они  находятся в мембранах животных и растительных клеток. Особенно богата ими нервная ткань, также сфингомиелины обнаружены в ткани почек, печени и других тканей.

Молекулы фосфолипидов, особенно глицерофосфолипидов и сфингофосфолипидов, обладают выраженной полярностью. В структуре фосфолипидов можно выделить  два фрагмента: полярную голову, образованную фосфорной кислотой и азотосодержащим соединением (холин, этаноламин, серин) и гидрофобные «хвосты», образованные остатками высших жирных кислот.

Рисунок 4– Структурное изображение фосфолипида

                         а– фосфатидилхолин  (лецитин);

     б – схематическое изображение молекулы фосфолипида

Благодаря такому строению фосфолипиды обладают следующими свойствами:

- в растворах образуют слоистые структуры, которые играют очень важную роль в построении клеточных мембран. Фосфолипиды, образуя структурный матрикс мембран в виде двойных липидных слоев, являются основой любой биологической мембраны;

- образуя комплексы с белками клеточных мембран, регулируют  процессы транспорта ионов и других органических веществ через мембрану, обеспечивая нормальный ход обменных процессов в клетке;

- являются природными антиоксидантами и предохраняют масла от окисления, легко окисляясь сами;

- хорошие поверхностно-активные вещества (ПАВ), способные оказывать влияние на структурно-механические свойства клейковины, улучшая хлебопекарные достоинства пшеничной муки;

  •   прекрасные эмульгаторы (особенно лецитин) и широко используются в пищевой промышленности  при изготовлении шоколада, маргарина, майонеза.

1.5.2 Гликолипиды

Гликолипиды в отличии от фосфолипидов не содержат фосфорной кислоты, а вместо азотистого основания в их состав входят  углеводы, чаще всего галактоза или ее производные. Из спиртов гликолипиды содержат глицерол или сфингозин, а также остатки жирных кислот.

Среди гликолипидов особенно широко распространены галактозилацилглицеролы.

Эти соединения содержатся в самых различных растительных тканях. Они обнаружены в митохондриях, хлоропластах и локализованы в мембранах; содержатся в водорослях, некоторых фотосинтезирующих бактериях.

Главной формой гликолипидов в животных тканях, особенно в нервной  ткани, в частности в мозге, являются гликосфинголипиды. Последний содержит церамид, состоящий из спирта сфингозина и остатка жирной кислоты, и один или несколько  остатков сахаров. Важнейшими гликосфинголипидами являются цероброзиды и ганглиозиды.

Простейшими цероброзидами являются галактозилцерамиды и глюкозилцерамиды. В состав галактозилцерамидов входит Д-галактоза, которая связана эфирной связью с гидроксильной группой аминоспирта сфингозина. Кроме того, в составе галактозилцерамида имеется жирная кислота. Чаще всего лигноцериновая, нервоновая или цереброновая кислота, т.е. жирные кислоты, имеющие 24 углеродных атома.

Рисунок 5 – Структура галактозилцерамида

Существуют сульфогалактозилцерамиды, которые отличаются от галактозилцерамидов наличием остатка серной кислоты, присоединенного к третьему углеродному атому гексозы.

Глюкозилцерамиды в отличие от галактозилцерамидов вместо остатка галактозы имеется остаток глюкозы.

Более сложными гликосфинголипидами являются ганглиозиды. Одним  из простейших ганглиозидов является гематозид, выделенный из стромы эритроцитов. Он содержит церамид, по одной молекуле галактозы,  глюкозы и N-ацетилнейраминовой кислоты. Ганглиозиды в большом количестве находятся в нервной ткани. Они выполняют рецепторные и другие функции.

1.6 Неомыляемые липиды

Липиды, которые не гидролизуются с освобождением жирных кислот и при щелочном гидролизе не способны образовывать мыла, называются неомыляемыми. В основе классификации неомыляемых липидов лежит их разделение на две группы – стероиды и терпены.

1.6.1 Стероиды

Стероиды – широко распространенные в природе соединения. Это  производные тетрациклических тритерпенов. Основу их структуры составляет циклопентанпергидрофенантреновое ядро:

К стероидам относят стерины (стеролы) – высокомолекулярные циклические спирты и стериды – сложные эфиры стеринов и высших жирных кислот. Стериды не растворяются в воде, но хорошо растворимы во всех жировых растворителях и входят в состав сырого жира. Стериды образуют омыляемую фракцию липидов. Стерины же при омылении жира остаются в неомыляемой фракции, составляя наибольшую ее часть.

В организме человека и животных главным представителем стеринов (стеролов) является холестерин:

Холестерин играет важную роль в жизнедеятельности животного организма:

– участвует в построении биологических мембран. Находясь в составе мембран клеток, вместе с фосфолипидами и белками обеспечивает избирательную проницаемость клеточной мембраны, оказывает регулирующее влияние на состояние мембраны и на активность связанных с ней ферментов;

– является предшественником образования в организме желчных кислот, а также стероидных гормонов. К этим гормонам относятся тестостерон (мужской половой гормон), эстрадиол (один из женских гормонов), альдестерон (образующийся в коре надпочечников и регулирующий водно – солевой баланс);

– является провитамином витаминов группы Д. Холестерин под действием УФ-лучей в коже превращается в витамин Д3 (холекальциферол), который в свою очередь служит предшественником гормона, участвующего в регуляции обмена кальция и минерализации костной ткани. Так же нужно отметить, что при нарушении обмена веществ холестерин откладывается на стенках кровеносных сосудов, приводя к тяжелой болезни – атеросклерозу.

В растениях и дрожжах содержится эргостерин (эргостерол):

При облучении эргостерола УФ из него образуется витамин Д2 (эргокальциферол). Для промышленного изготовления витаминов группы Д (антирахитические витамины) используют дрожжи, они содержат свыше 2% стеридов и  стеролов на сухое вещество.

В растительных маслах (соевое. кукурузное, масла пшеничных зародышей) содержится обычно от двух до четырех различных стеролов, отличающихся друг от друга количеством, расположением двойных связей и строением боковой цепи, причем обязательной составной частью является β-ситостерол:

В кукурузе доля β-ситостерола составляет 86% от всех стеролов, а в пшенице – 66%.

1.6.2 Терпены

В основе строения терпенов находится молекула изопрена:

Это мономер, из которого построены олигомерные или полимерные цепочки неомыляемых липидов. Терпены, молекулы которых представляют собой соединения из 2, 3, 4, 6, 8 молекул изопрена, называют соответственно моно-, сескви-, ди-, три- и тетратерпенами. Молекулы терпенов могут иметь линейную или циклическую структуру, содержать гидроксильные, карбонильные и карбоксильные группы.

Монотерпены. это летучие жидкие вещества с приятным запахом. Они являются основными компонентами душистых эфирных масел, получаемых из растительных тканей – цветов, листьев, плодов.

В качестве типичного представителя алифатических монотерпенов является мирцен. От 30 до 50% мирцена содержится в эфирном масле хмеля. Представителями кислородных производных алифатических терпенов являются линалоол, гераниол и цитронеллол. Все они представляют спирты. Линалоол содержится в цветках ландыша, в апельсиновом и кориандровом масле. По-видимому,  аромат персиков обусловлен различными сложными эфирами линалоола – уксуснокислым, муравьинокислым и др. Гераниол встречается в масле эвкалипта. Цитронеллол обладает запахом розы и содержится в розовом, гераниевом и других маслах.

Среди моноциклических терпенов наиболее распространенным и важным  являются лимонен, ментол, карвон. Лимонен содержится в скипидаре, тминном масле; ментол составляет главную (до 70%) эфирного масла перечной мяты, а карвон содержится в эфирных маслах тмина и укропа.

Сесквитерпены. Эта группа терпенов также входит в состав эфирных масел. Одно из наиболее интересных соединений – ароматический сесквитерпен димер госсипол – специфический пигмент хлопковых семян.

Дитерпены.  Наиболее широко представлены соединениями, входящими в состав многих биологически важных соединений. Так, дитерпеновый спирт фитол входит в состав хлорофилла. 

Хлорофилл – это пигмент, придающий  растениям зеленый цвет. Он содержится в листьях и стеблях, в колосьях и зернах. Хлорофилл находится в особых образованиях протоплазме, называемых хлоропластами. В растениях существуют два вида хлорофилла: хлорофилл а (сине-зеленый) и хлорофилл в (желто-зеленый)

Большой интерес представляет сходство строения хлорофилла с красящим веществом  крови гемином. В состав хлорофилла и гемина входят четыре остатка пиррола, соединенных в виде порфиринового ряда, которое в гемине связано с железом, а в хлорофилле – с магнием. Хлорофилл принимает активное участие в процессе фотосинтеза. В результате этого процесса диоксид углерода под влиянием солнечного света поглощенного хлорофиллом, восстанавливается до гексозы и выделяется свободный кислород. Фотосинтез – это единственный процесс, в ходе которого лучистая энергия солнца в виде химических связей запасается в органических соединениях.

Дитерпеновые цепи входят в состав витаминов Е и К1; витамин А – это моноциклический дитерпен. Трициклическим дитерпеном служит абиетиновая кислота – главный компонент смоляных кислот, известный в технике как канифоль. Натриевые соли канифоли – это один из компонентов хозяйственного  мыла. Многие дитерпены являются компонентами эфирных масел – камфорен, каурен, стевиол и агатовая кислота.

Тритерпены. Представлены наиболее известным тритерпеном скваленом. Сквален – исходное соединение, из которого у животных и дрожжей, синтезируются стероиды, например, холестерол. Тритерпеновая цепь входит в состав витамина К2. К более сложным тритерпенам относятся лимонин и кукурбитацин А – соединения, обуславливающие горький вкус лимона и тыквы.

Тетратерпены. Это пигменты – каротиноиды. Они придают растениям желтую или оранжевую окраску разных оттенков. Наиболее известные представители каротиноидов – каротин, лютеин, цеаксантин и криптоксантин.

Каротины впервые выделены из моркови (от лат. «карота» – морковь). Известно три типа каротинов: α-, β- и γ-каротины, отличающиеся как по химическому строению, так и по биологическим функциям. Наибольшей биологической активностью обладает  β-каротин, так как он содержит два β-иононовых кольца и при его гидролитическом распаде под действием фермента  каротиназы образуется две молекулы витамина А1:

При гидролитическом расщеплении α- и γ-каротина образуется по одной молекуле витамина А, так как они содержат по одному β-иононовому кольцу. Степень усваяемости каротиноидов и свободного витамина А зависит от содержания жиров в пище. β-Каротин придает моркови, тыкве, апельсинам, персикам и другим овощам и фруктам характерный для них цвет. Каротины наряду с хлорофиллом содержатся во всех зеленых частях растений.

Лютеин – желтый пигмент, содержащийся наряду с каротинами в зеленых частях растений. Окраска семян желтой кукурузы зависит от присутствующих в них каротинов и каротиноидов, получивших название цеаксантина и криптоксантина. Окраска плодов томата обусловлена каротиноидом ликопином.

Лютеин, цеаксантин и криптоксантин также обнаруживают активность витамина А.

Каротиноиды играют большую роль в обмене веществ у растений, участвуя в процессе фотосинтеза. Также каротиноиды имеют большое значение в пищевой промышленности. Пигментация каротиноидами зерна хлебных злаков влияет на их технологическое достоинство. Кремовый цвет, характерный для хорошей пшеничной муки, объясняется главным образом содержанием каротиноидов. Пигментирование зерна особенно высоко ценится у твердой пшеницы, идущей на выработку макаронной муки и манной крупы. Каротиноиды используются как природные красители в кондитерской и масло – жировой промышленностях.

Пентатерпены. Представители этой группы – убихинон Q, пластохиноны выполняют роль переносчиков электронов в окислительно – восстановительных реакциях, связанных с синтезом АТФ.

1.7 Биологические мембраны

Мембраны – это универсальная форма структурной организации живой материи. Биологические мембраны или биомембраны, формируют внешнюю границу клетки, делят объем цитоплазмы  клетки на отсеки, или компарменты, в которых осуществляются метаболические реакции.

Мембрана содержит липиды и белки, а также небольшое количество углеводов в составе гликосфинголипидов и гликопротеинов. Биомембраны имеют жидкостно-мозаичную  структуру, согласно которой мембрана состоит из бислоя сложных липидов (фосфолипидов, гликолипидов, стеролов), в которых находятся глобулярные белки.

Рисунок 6 – Схема строения двойного липидного слоя в биомембране

Липиды в бислое расположены так, что их гидрофобные хвосты (углеводородные остатки жирных кислот) направлены внутрь мембраны на встречу друг другу и частично перекрываются, обе поверхности бислоя составлены  гидрофильными головками липидов – фосфолипидов. Белки, встроенные в липидный бислой мембраны, могут быть перефирийными или интегральными. Перефирийные белки связаны с полярной поверхностью бислоя относительно слабыми водородными связями и легко извлекаются из мембраны. Интегральные  белки погружены в липидный слой, иногда пронизывают ее насквозь. Удерживаются они значительно прочнее за счет большего числа гидрофобных взаимодействий, водородных и других связей.

Биомембраны ассиметричны, их наружная поверхность отличается по свойствам от внутренней поверхности. Ассиметричность  биомембраны обусловлена главным образом различием в природе белков, располагающихся на внешней и внутренней поверхности биомембраны.

Все биомембраны имеют принципиально одинаковую структуру, отличаясь только в деталях. Они могут иметь различные по химическому составу липиды в бислое, разные жирно-кислотные остатки в составе фосфолипидов, разные типы (по химическому строению, гидрофильным и гидрофобным свойствам) встроенных белков. Соотношение липид:белок в биомембране также может варьировать.

Биомембраны представляют собой не просто оболочки клеток и субклеточных  структур, но и выполняют ряд важнейших разнообразных функций:

1. Играют роль механического барьера. Участвуют в формировании клеточных структур, ограничивают их от внешней среды;

2. Выполняют транспортную функцию. Транспортные системы, локализованные в мембранах, обеспечивают перенос определенных соединений. В качестве транспортных систем в мембранах выступают специфические транспортеры. К ним относят ионофоры, которые увеличивают скорость диффузии ионов через мембрану, и представляют собой токсины, синтезирующиеся грибами и бактериями. Также специфическими транспортерами являются белки. Перенос небольших молекул и ионов через мембраны обеспечивается следующими типами интегральных мембранных белков: каналами и порами; пассивными и активными транспортерами. Белки, формирующие каналы и поры, содержат гидрофильный проход, который позволяет молекулам и ионам с подходящим размером, зарядом и геометрической конфигурацией проникать через мембрану в каком-либо направлении. Активные и пассивные транспортеры, в отличие от каналов и пор, специфически связывают субстрат и транспортируют его через мембрану, изменяя свою конформацию. Пассивные транспортеры способны перемещать молекулы по концентрационному градиенту и не требуют затрат энергии. Для функционирования активных транспортеров, переносящих субстраты против концентрационного градиента, необходимы затраты энергии. При первичном активном транспорте энергия поставляется непосредственно за счет гидролиза АТФ, энергии света или электронного транспорта. Вторичный активный транспорт обеспечивается с помощью ионных градиентов.

3. Выполняют разделительную функцию. Биомембраны регулируют поток веществ внутрь клетки и из нее, что важно для сохранения постоянства внутриклеточной среды.

4. Имеют избирательную проницаемость, которая основана на системах специфичности транспортных белков, способных узнавать определенное соединение и проводить его через мембрану.

5. Важнейшая функция биомембран – генерирование биоэлектрического потенциала, аккумулирование и трансформация энергии. Мембраны являются теми клеточными структурами, благодаря которым возможна трансформация осмотической и электрической форм энергии в энергию макроэргической фосфатной связи (~) АТФ. Так, процессы фотосинтеза и дыхания осуществляются, соответственно, в мембранах хлоропластов и митохондрий. Например, при дыхании энергия освобождается в мембранах митохондрий и используется в процессах биосинтеза различных веществ.

6. Выполняют рецепторную функцию. В связи с наличием в мембранах специфических белковых рецепторов клетки способны воспринимать внешние сигналы и в ответ на них перестраивать свой обмен веществ.

7. Выполняют адгезивную функцию, благодаря которой клетки способны взаимодействовать друг с другом, что существенно, в частности, при формировании тканей.

8. Обеспечивают важнейшие метаболические процессы. Это связано с тем, что в большинстве мембран содержаться ферменты и ферментные комплексы, которые способны осуществлять различные метаболические процессы.  

2 Метаболизм липидов

Жиры в организме человека и животных являются запасными веществами и служат источником энергии.

Наиболее интенсивно процессы метаболизма липидов протекают в семенах масличных растений и в жировой ткани человека и животных.

2.1 Переваривание и всасывание липидов

Как известно, расщепление триацилглицеролов происходит под действием фермента липазы.

В полости рта жиры не подвергаются никаким изменениям, т.к. слюна не содержит данный фермент.

Расщепление триацилглицеролов в желудке взрослого человека невелико. Это связано со следующими причинами: во-первых, в желудочном соке содержание липазы крайне низкое; во-вторых, рН желудочного сока (1,5) далек от оптимума действия этого фермента ( рН для желудочной липазы 5,5-7,5 ); в-третьих, в желудке отсутствуют условия для эмульгирования триацилглицеролов, а липаза может активно расщеплять жир, находящийся в форме эмульсии.

Незначительное расщепление триацилглицеролов в желудке облегчает последующее переваривание их в тонком кишечнике под действием липазы панкреатического сока, вырабатываемой поджелудочной железой. Этому процессу способствуют следующие факторы:

– хорошее перемешивание в кишечнике пищевой кашицы с пищеварительными соками. Это связано с тем, что происходит нейтрализация попавшей в кишечник с пищей соляной кислоты желудочного сока бикарбонатами, содержащимися в панкреатическом и кишечном соке. Поэтому выделяющиеся при разложении бикарбонатов пузырьки углекислого газа и способствуют тщательному перемешиванию;

– эмульгирование жира в кишечника. Наиболее мощное эмульгирующее действие на жиры оказывают соли желчных кислот, попадающие в двенадцатиперстную кишку с желчью в виде натриевых солей.

         По химической природе желчные кислоты являются производными холановой кислоты и представляют собой конечный продукт метаболизма холестерина. В желчи человека в основном содержатся такие желчные кислоты как: холевая (3,7,12 – триоксихолановая), дезоксихолевая (3,12 – диоксихолановая) и хенодезоксихолевая (3,7 – диоксихолановая).

Эти соединения иногда называют парными желчными кислотами, так как они состоят из двух компонентов – желчной кислоты и глицина или таурина:

  

Считают, что только комбинация соль желчной кислоты + ненасыщенная жирная кислота + моноглицерид придает необходимую степень эмульгирования жира. Соли желчных  кислот резко уменьшают поверхностное натяжение на поверхности раздела жирвода, благодаря чему они не только облегчают эмульгирование, но и стабилизируют уже образовавшуюся эмульсию;

– активирование панкреатической липазы. Данный фермент является гликопротеином, имеющим мол.массу 48000 и оптимум действия рН 8-9. Как и другие пищеварительные ферменты (пепсин,трипсин и др.) панкреатическая липаза поступает в верхний отдел тонкой кишки в виде неактивной пролипазы. Превращение пролипазы в активную липазу происходит при участии желчных кислот и еще одного белка панкреатического сока – колипазы. Последняя присоединяется к пролипазе в молекулярном соотношении 2:1. Это приводит к тому, что липаза становится активной и устойчивой к действию различных  протеолитических ферментов.

     Основными продуктами расщепления триацилглицеролов при действии активной панкреатической липазы являются β(2)- моноглицерид и жирные кислоты. Фермент катализирует гидролиз эфирных связей в α(1), α(3)-положениях, в результате чего и образуется β(2)-моноглицерол и две молекулы жирной кислоты.

         В панкреатическом соке наряду с липазой содержится фермент-изомераза, катализирующая внутримолекулярный перенос ацила из β(2)-положения моноглицерида в α(1)-положение. Поскольку эфирная связь в α-положении чувствительна к действию панкреатической липазы, последняя расщепляет большую часть α-моноглицеридов до конечных продуктов – глицерина и жирной кислоты.

Гидролиз триацилглицеролов при участии панкреатической липазы представлен на рисунке 7.

Рисунок 7–Схема гидролиза триацилглицерола под действием

панкреатической липазы.

Всасывание происходит в проксимальной части тонкой кишки. Основная часть жира всасывается лишь после расщепления его панкреатической липазой на жирные кислоты, моноглицеролы и глицерин. Жирные кислоты с короткой углеродной цепью (менее 10 атомов углерода) и глицерин, будучи хорошо растворимыми в воде, свободно всасываются в кишечнике и поступают в кровь воротной вены, оттуда в печень, минуя какие-либо превращения в кишечной стенке.

Всасывание жирных кислот с длинной цепью и моноглицеролов происходит более сложно. Этот процесс осуществляется при участии желчи и, главным образом, желчных кислот, фосфолипидов, холестерина, входящих в ее состав. Жирные кислоты с длинной цепью и моноглицеролы в просвете кишечника образуют с этими соединениями устойчивые в водной среде мицеллы. Структура мицелл такова, что их гидрофобное ядро (жирные кислоты, моноглицеролы и т.д.) оказывается окруженным снаружи гидрофильной оболочкой из желчных кислот и фосфолипидов.

В составе таких мицелл высшие жирные кислоты переносятся к всасывающей поверхности кишечного эпителия. В результате диффузии, мицеллы проникают в эпителиальные клетки ворсинок, где происходит распад жировых мицелл. При этом желчные кислоты поступают в ток крови и через систему воротной вены попадают сначала в печень, а оттуда вновь в желчь. Таким образом происходит постоянная циркуляция желчных кислот между печенью и кишечником. Этот процесс получил название печеночно-кишечной циркуляции.

После того как произошло всасывание глицерина жирных кислот, они могут использоваться тканями и органами тела в качестве энергетического материала.

2.2 Окисление жира

Образовавшиеся в результате гидролиза триацилглицерола (см. рис. 7) глицерин и жирные кислоты вовлекаются в дальнейший путь распада – окисление.

2.2.1 Окисление глицерина

Глицерин вовлекается в цитоплазме клетке в процесс гликолиза.

Сначала глицерин при участии фермента глицерофосфаткиназы (трансфераза) превращается в -глицеролфосфат. Последний под действием НАД+ – зависимой -глицеролфосфатдегидрогеназы (оксидоредуктаза) превращается в фосфодиоксиацетон:

Фосфодиоксиацетон, являясь обычным метаболитом гликолиза, изомеризуется в 3-фосфоглицериновый альдегид и включается в данный метаболический путь до ПВК. Пировиноградная кислота, превращаясь в ацетил-КоА (этап III), полностью окисляется в цикле Кребса (этап IV) до СО2, Н2О и выделением АТФ.

2.2.2 Окисление жирных  кислот

Окисление  жирных кислот протекает в печени, почках, скелетных и сердечных мышцах, в жировой ткани.

Ф.Кнооп высказал предположение, что окисление молекулы жирной кислоты в тканях организма происходит в  -окислении. В результате от молекулы жирной кислоты отщепляются двууглеродные фрагменты со стороны карбоксильной группы. Процесс -окисления жирных кислот складывается из следующих этапов:

Активация жирных кислот. Подобно первой стадии гликолиза сахаров перед -окислением жирные кислоты подвергаются активации. Эта реакция протекает на наружной поверхности мембраны митохондрий при участии АТФ, коэнзима А (НS-КоА) и ионов Mg2+. Реакция катализируется ацил-КоА-синтетазой:

В результате реакции образуется ацил-КоА, являющийся активной формой жирной кислоты.

Транспорт жирных кислот внутрь митохондрий. Коэнзимная форма жирной кислоты, в равной мере как и свободные жирные кислоты, не обладает способностью проникать внутрь митохондрий, где, собственно, и протекает их окисление, переносчиком  активированных жирных кислот через внутреннюю митохондриальную мембрану служит карнитин  (-триметиламино--оксибути-рат):

После прохождения ацилкарнитина через мембрану митохондрий происходит обратная реакция – расщепления ацилкарнитина при участии НS-КоА и митохондриальной карнитин-ацилтрансферазы:

Ацил-КоА в митохондрии подвергается процессу -окисления.

Этот путь окисления связан с присоединением атома кислорода к углеродному атому жирной кислоты, находящемуся в -положении:

При -окислении происходит последовательное отщепление от карбоксильного конца углеродной цепи жирной кислоты двууглеродных фрагментов в форме ацетила-КоА и соответствующее укорачивание цепи жирной кислоты:

В матриксе митохондрии ацил-КоА распадается в результате повторяющейся последовательности четырех реакций (рис.8).

1) окисление с участием ацил-КоА-дегидрогеназы (ФАД-зависимой дегидрогеназы);

2) гидратация, катализируемой еноил-КоА-гидратазой;

3) второго окисления под действием 3-гидроксиацетил-КоА-дегидрогеназы (НАД-зависимой дегидрогеназы);

4) тиолиза с участием ацетил-КоА-ацилтрансферазы.

Совокупность этих четырех последовательностей реакций составляет один оборот -окисления жирной кислоты (см. рис. 8).

Образовавшийся ацетил-КоА подвергается окислению в цикле Кребса, а ацетил-КоА, укоротившийся на два углеродных атома, снова многократно проходит весь путь -окисления вплоть до образования бутирил-КоА (4-углеродное соединение), на последнем этапе -окисления распадается на две молекулы ацетил-КоА.

При окислении жирной кислоты, содержащей n углеродных атомов, происходит n2-1 цикл -окисления (т.е. на один цикл меньше, чем n2, так как при окислении бутирил-КоА сразу происходит образование двух молекул ацетил-КоА) и всего получится n2 молекул ацетил-КоА.

Например при окислении пальмитиновой кислоты (С16) повторяется 162-1=7 циклов -окисления и образуется 162=8 молекул ацетил-КоА.

Рисунок 8 – Схема -окисления жирной кислоты

Баланс энергии. При каждом цикле -окисления образуется одна молекула ФАДН2 (см. рис. 8; реакция 1) и одна молекула НАДН+Н+(реакция 3). Последняя в процессе окисления дыхательной цепи и сопряженного с ним фосфорилирования дают: ФАДН2 – 2 молекулы АТФ и НАДН+Н+ – 3 молекулы АТФ, т.е. в сумме за один цикл образуется 5 молекул АТФ. При окислении пальмитиновой кислоты образуется 57=35 молекул АТФ. В процессе -окисления пальмитиновой кислоты образуется 8 молекул ацетил-КоА, каждая из которых, «сгорая» в цикле Кребса, дает 12 молекул АТФ, а 8 молекул дадут 128=96 молекул АТФ.

Таким образом, всего при полном -окислении пальмитиновой кислоты образуется 35+96=131 молекула АТФ. С учетом одной молекулы АТФ, потраченной в самом начале на стадии активации жирной кислоты, общий энергетический выход при полном окислении одной молекулы пальмитиновой кислоты составит 131-1=130 молекул АТФ.

Однако, образовавшийся в результате -окисления жирных кислот ацетил-КоА, может не только окисляться до СО2, Н2О, АТФ, вступая в цикл Кребса, но использоваться на синтез холестерина , а также углеводов в глиоксилатном цикле.

Глиоксилатный путь специфичен только для растений и бактерий, у животных организмов он отсутствует. Данный процесс синтеза углеводов из жиров подробно описан в методическом указании «Взаимосвязь процессов обмена углеводов, жиров и белков» (см. п. 2.1.1, с. 26).

Окисление ненасыщенных жирных кислот

Олеиновая, линолевая  и линоленовая  кислоты, являющиеся важнейшими компонентами ацилглицеролов, также подвергаются -окислению. Окисление этих ненасыщенных жирных кислот, в принципе, происходит также, как и окисление насыщенных жирных кислот, но с некоторыми особенностями.

При окислении олеиновой кислоты (содержащей одну двойную связь) в результате трех циклов -окисления (рис. 8) образуется 3 молекулы ацетил-КоА и 12-углеродная ненасыщенная жирная кислота с цис-двойной связью между 3-им и 4-ым атомами углерода.

Дело в том, что образовавшаяся 12-углеродная ненасыщенная жирная кислота должна снова включиться в путь -окисления, но двойные связи природных ненасыщенных жирных кислот имеют цис-конфигурацию, а при -окислении насыщенных жирных кислот двойные связи имеют транс-конфигурацию. Кроме того, в результате последовательного удаления трех двууглеродных фрагментов (ацетил-КоА) до первой двойной связи дает 3,4– ацил-КоА (расположение двойной связи между 3 и 4 атомами углерода), а не 2,3– ацил-КоА, который является промежуточным продуктом при -окислении насыщенных жирных кислот. Поэтому в тканях существует фермент, который осуществляет перемещение двойной связи из положения 3-4 в положение 2-3, а также изменяет конфигурацию двойной связи из цис- в транс-положение. Этот фермент получил название

3,4–цис          2,3  транс-еноил-КоА-изомеразы:

Образовавшийся 2,3–транс-еноил-КоА включается в путь -окисления (см. рис.8) в стадию гидратации (2).

В результате полного окисления олеиновой кислоты образуется 9 (6+3) молекул ацетил-КоА, которые включаются в цикл Кребса и «сгорают» до СО2, Н2О с образованием энергии.

Окисление жирных кислот с нечетным числом
углеродных атомов

Основная масса природных липидов содержит жирные кислоты с четным числом углеродных атомов, однако в липидах многих растений и некоторых морских организмов присутствуют жирные кислоты с нечетным числом атомов углерода.

Установлено, что жирные кислоты с нечетным числом углеродных атомов окисляются таким же образом, как и жирные кислоты с четным числом углеродных атомов, с той лишь разницей, что на последнем этапе расщепления (-окисления) образуется одна молекула пропионил-КоА и одна молекула ацетил-КоА, а не 2 молекулы ацетил-КоА (рис. 8) как в случае -окисления жирных кислот с четным числом углеродных атомов:

Рисунок 9 – Схема -окисления жирных кислот с нечетным числом

углеродных атомов

Но при прохождении всех этих реакций сукцинил-КоА до ЩУК по циклу Кребса не происходит полного окисления до СО2 и Н2О. Для этого образовавшийся оксалоацетат через ряд последовательных реакций превращается в ацетил-КоА, который поступая в цикл Кребса, полностью «сгорает» до СО2 , Н2О и выделением энергии.

Превращение оксалоацетата в ацетил-КоА

1) Образовавшийся оксалоацетат локализован в митохондрии. Мембрана митохондрий непроницаема для образовавшегося оксалоацетата. Последний здесь же в митохондрии восстанавливается в яблочную кислоту:

Реакция протекает при участии митохондриальной НАД-зависимой малатдегидрогеназы. Образовавшаяся яблочная кислота легко выходит из митохондрии в цитозоль клетки и вновь окисляется в щавелевоуксусную кислоту при участии цитоплазматической НАД-зависимой малатдегидрогеназы:

2) Превращение оксалоацетата в фосфоенолпируват происходит в цитоплазме клетки:

3) Образовавшийся фосфоенолпируват (ФЕП) по пути гликолиза превращается в ПВК, а пируват в результате окислительного декарбоксилирования в ацетил-КоА, который поступая в цикл Кребса, полностью окисляется до СО2 и Н2О, с выделением энергии.

С учетом выше сказанного, видно, что образовавшийся пропионил, в конечном счете, должен превратиться в ацетил-КоА и окислиться в цикле Кребса. Таким образом, все жирные кислоты в результате -окисления превращаются в ацетил-КоА, который сгорает в цикле Кребса.

2.3 Синтез триацилглицеролов

В организме человека исходным сырьем для биосинтеза жиров могут служить углеводы, поступающие с пищей, в растениях – сахароза, поступающая из фотосинтезирующих тканей. Основные этапы синтеза жира включают образование из углеводов глицерол-3-фосфата и жирных кислот, а затем сложноэфирных связей между спиртовыми группами глицерола и карбоксильными группами жирных кислот:

Рисунок 10 – Общая схема синтеза жира из углеводов

Рассмотрим более подробно основные этапы синтеза жира из углеводов (см. рис. 11).

Синтез глицерол-3-фосфата

I этап – при действии соответствующих гликозидаз углеводы подвергаются гидролизу с образованием моносахаридов, которые в цитоплазме клеток включаются в процесс гликолиза. Промежуточными продуктами гликолиза являются фосфодиоксиацетон и 3-фосфоглицериновый альдегид.

IIэтап. Глицерол-3-фосфат образуется в результате восстановления фосфодиоксиацетона – промежуточного продукта гликолиза:

Синтез жирных кислот

Строительным блоком для синтеза жирных кислот в цитозоле клетки служит ацетил-КоА, который образуется двумя путями: либо в результате окислительного декарбоксилирования пирувата. (см. рис. 11, Этап III), либо в результате -окисления жирных кислот (см. рис. 8).

Рисунок 11 –  Схема превращения углеводов в липиды

Напомним, что превращения образовавшегося при гликолизе пирувата в ацетил-КоА и его образование при -окислении жирных кислот происходит в митохондриях. Синтез жирных кислот протекает в цитоплазме. Внутренняя мембрана митохондрий непроницаема для ацетил-КоА. Его поступление в цитоплазму осуществляется по типу облегченной диффузии в виде цитрата или ацетилкарнитина, которые в цитоплазме превращаются в ацетил-КоА, оксалоацетат или карнитин. Однако главный путь переноса ацетил-коА из митохондрии в цитозоль является цитратный (см. рис. 12).

Вначале внутримитохондриальный ацетил-КоА взаимодействует с оксалоацетатом, в результате чего образуется цитрат. Реакция катализируется ферментом цитрат-синтазой. Образовавшийся цитрат переносится через мембрану митохондрий в цитозоль при помощи специальной трикарбоксилаттранспортирующей системы.

В цитозоле цитрат реагирует с HS-КоА и АТФ, вновь распадается на ацетил-КоА и оксалоацетат. Эта реакция катализируется АТФ-цитратлиазой. Уже в цитозоле оксалоацетат при участии цитозольной дикарбоксилат-транспортирующей системы возвращается в митохондриальный матрикс, где окисляется до оксалоацетата, завершая тем самым так называемый челночный цикл:

Рисунок 12  – Схема переноса ацетил-КоА из митохондрий в цитозоль

Биосинтез насыщенных жирных кислот происходит в направлении, противоположном их -окислению, наращивание углеводородных цепей жирных кислот осуществляется за счет последовательного присоединения к их концам двухуглеродного фрагмента (С2) – ацетил-КоА (см. рис. 11, этап IV.).

Первой реакцией биосинтеза жирных кислот является карбоксилирование ацетил-КоА, для чего требуется СО2, АТФ, ионы Mn. Катализирует эту реакцию фермент ацетил-КоА – карбоксилаза. Фермент содержит в качестве простетической группы биотин (витамин Н). Реакция протекает в два этапа: 1 – карбоксилирование биотина с участием АТФ и II – перенос карбоксильной группы на ацетил-КоА, в результате чего образуется малонил-КоА:

Малонил-КоА представляет собой первый специфический продукт биосинтеза жирных кислот. В присутствии соответствующей ферментной системы малонил-КоА быстро превращается в жирные кислоты.

Нужно отметить, что скорость биосинтеза жирных кислот определяется содержанием сахаров в клетке. Увеличение концентрации глюкозы в жировой ткани человека, животных и повышение скорости гликолиза стимулирует процесс синтеза жирных кислот. Это свидетельствует о том, что жировой и углеводный обмен тесно взаимосвязаны друг с другом. Важную роль здесь играет именно реакция карбоксилирования ацетил-КоА с его превращением в малонил-КоА, катализируемая ацетил-КоА-карбоксилазой. Активность последней зависит от двух факторов: наличия в цитоплазме высокомолекулярных жирных кислот и цитрата.

Накопление жирных кислот оказывает тормозящее влияние на их биосинтез, т.е. подавляют активность карбоксилазы.

Особая роль отводится цитрату, который является активатором ацетил-КоА-карбоксилазы. Цитрат в то же время играет роль связующего звена углеводного и жирового обменов. В цитоплазме цитрат вызывает двойной эффект в стимулировании синтеза жирных кислот: во-первых, как активатор ацетил-КоА-карбоксилазы и, во-вторых, как источник ацетильных групп.

Очень важной особенностью синтеза жирных кислот является то, что все промежуточные продукты синтеза ковалентно связаны с ацилпереносящим белком (HS-АПБ).

HS-АПБ – низкомолекулярный белок, который термостабилен, содержит активную HS-группу и в простетической группе которого содержится пантотеновая кислота (витамин В3). Функция HS-АПБ аналогична функции фермента А (HS-КоА) при -окислении жирных кислот.

В процессе построения цепи жирных кислот промежуточные продукты образуют эфирные связи с АБП (см. рис. 14):

Цикл удлинения цепи жирных кислот включает четыре реакции: 1) конденсации ацетил-АПБ (С2) с малонил-АПБ (С3); 2) восстановления; 3) дегидротации и 4) второго восстановления жирных кислот. На рис. 13 представлена схема синтеза жирных кислот. Один цикл удлинения цепи жирной кислоты включает четыре последовательных реакции.

Рисунок 13  – Схема синтеза жирных кислот

В первой реакции (1) – реакции конденсации – ацетильная и малонильные группы взаимодействуют между собой с образованием ацетоацетил-АБП с одновременным выделением СО21). Эту реакцию катализирует конденсирующий фермент -кетоацил-АБП-синтетаза. Отщепленный от малонил-АПБ СО2 – это тот же самый СО2, который принимал участие в реакции карбоксилирования ацетил-АПБ. Таким образом, в результате реакции конденсации происходит образование из двух-(С2) и трехуглеродных (С3) компонентов четырехуглеродного соединения (С4).

Во второй реакции (2) – реакции восстановления, катализируемой -кетоацил-АПБ-редуктазой, ацетоацетил-АПБ превращается в -гидроксибутирил-АПБ. Восстанавливающим агентом служит НАДФН + Н+.

В третьей реакции (3) цикла-дегидратации – от -гидроксибутирил-АПБ отщепляется молекула воды с образованием кротонил-АПБ. Реакция катлизируется -гидроксиацил-АПБ-дегидратазой.

Четвертой (конечный) реакцией (4) цикла является восстановление кротонила-АПБ в бутирил-АПБ. Реакция идет под действием еноил-АПБ-редуктазы. Роль восстановителя здесь выполняет вторая молекула НАДФН + Н+.

Далее цикл реакций повторяется. Допустим, что идет синтез пальмитиновой кислоты (С16). В этом случае образование бутирил-АПБ завершается лишь первый из 7 циклов, в каждом из которых началом является присоединение молекулы молонил-АПБ (С3) – реакция (5) к карбоксильному концу растущей цепи жирной кислоты. При этом отщепляется карбоксильная группа в виде СО21). Этот процесс можно представить в следующем виде:

С3 + С2 С4 + С1 – 1цикл

С4 + С3  С6 + С1 – 2 цикл

С6 + С3  С8 + С1 –3 цикл

С8 + С3  С10 + С1 – 4 цикл

С10+ С3  С12 + С1 – 5 цикл

С12 + С3  С14 + С1 – 6 цикл

С14 + С3  С16 + С1 – 7 цикл

Могут синтезироваться не только высшие насыщенные жирные кислоты, но и ненасыщенные. Мононенасыщенные жирные кислоты образуются из насыщенных в результате окисления (десатурации), катализуруемой ацил-КоА-оксигеназой. В отличие от растительных тканей ткани животных обладают весьма ограниченной способностью превращать насыщенные жирные кислоты в ненасыщенные. Установлено, что две наиболее распространенные мононенасыщенные жирные кислоты – пальмитоолеиновая и олеиновая – синтезируются из пальмитиновой и стеариновой кислот. В организме млекопитающих, в том числе и человека, не могут образовываться, например, из стеариновой кислоты (С18:0) линолевая (С18:2) и линоленовая (С18:3) кислоты. Эти кислоты относятся к категории незаменимых жирных кислот. К незаменимым жирным кислотам относят также арахиновую кислоту (С20:4).

Наряду с десатурацией жирных кислот (образование двойных связей) происходит и их удлинение (элонгации). Причем, оба эти процесса могут сочетаться и повторяться. Удлинение цепи жирной кислоты происходит путем последовательного присоединения к соответствующему ацил-КоА двууглеродных фрагментов при участии малонил-КоА и НАДФН+Н+.

На рисунке 14 представлены пути превращения пальмитиновой кислоты в реакциях десатурации и элонгации.

Рисунок 14  – Схема превращения насыщенных жирных кислот

в ненасыщенные

Завершается синтез любой жирной кислоты отщеплением HS-АПБ от ацил-АПБ под влиянием фермента деацилазы. Например:

Далее жирная кислота подвергается активации.

Образовавшийся ацил-КоА является активной формой жирной кислоты.

Синтез триацилглицеролов

Образовавшиеся глицерол-3-фосфат  и ацил-КоА жирных кислот  – исходные соединения для биосинтеза жира (см. рис. 11, Этап V).

На первом этапе синтеза триацилглицеролов образуется 3-фосфатидная кислота (диацилглицерол-3-фосфат), при этом ацильные остатки КоА-производных жирных кислот переносятся специфическими ацил-трансферазами на спиртовые группы глицерол-3-фосфата:

На втором этапе фосфатидная кислота гидролизуется фосфатидатфосфатазой с образованием 1,2-диацилглицерола:

Затем 1,2-диацилглицерол превращается в триацилглицерол путем переноса остатка КоА-производного третьей жирной кислоты. Этот перенос катализируется ферментом диацилглицеролацилтрансферазой:

 3 Метаболизм фосфолипидов

3.1 Распад (катаболизм) фосфолипидов

Фосфолипиды также как и жиры, активно распадаются в тканях животных и растений.

Гидролиз фосфолипидов осуществляют несколько фосфолипаз, различающихся по расщеплению определенных связей и получивших название фосфолипаз А, С и Д:

Здесь R1 и R2 – углеводородные радикалы; В – остатки азотсодержащих одноатомных спиртов (холина, этаноламина, серина).

Фосфолипаза А1 отщепляет жирные кислоты по α-положению; фосфолипаза А2 осуществляет ту же самую реакцию по β-положению; фосфолипаза С отщепляет фосфорилированные азотсодержащие спирты от фосфолипидов; фосфолипаза D гидролизует фосфолипиды с образованием азотсодержащего спирта и фосфатидной кислоты.

В растениях обнаружены все виды расщепления. Фосфолипазы А обнаружены также у животных и микроорганизмов. Фосфолипазы локализованы преимущественно в лизосомах. Конечными продуктами гидролиза фосфолипидов является глицерин, жирные кислоты, азотистые спирты и фосфорная кислота.

3.2 Синтез фосфолипидов

В отличие от триацилглицеролов и жирных кислот фосфолипиды не являются существенным энергетическим материалом. Фосфолипиды, как было сказано ранее, играют важную роль в структуре и функции клеточных мембран.

Биосинтез фосфолипидов интенсивно происходит в печени, стенке кишечника, молочной железе и других тканях. Наиболее важные фосфолипиды синтезируются главным образом в эндоплазматической сетке клетки.

Центральную роль в биосинтезе фосфолипидов играют L-диацилглицеролы (в синтезе фосфатидилхолинов и фосфатидилэтаноламинов), фосфатидная кислота (в синтезе фосфатидилинозитов) и сфингозин (в синтезе сфингомиелинов).

В этих биосинтезах принимает участие цитидинтрифосфат (ЦТФ), выполняющий роль активатора.

Основными компонентами мембран являются фосфатидилэтаноламин и фосфатидилхолин.

В процессе синтеза фосфатидилэтаноламина вначале происходит активация этаноамина под действием этаноламинкиназы:

Этаноламинфосфат реагирует затем с цитидинтрифосфатом (ЦТФ), в результате чего образуется цитидиндифосфатэтаноламин (ЦДФ-этаноламин) и пирофосфат (РРі). Эту реакцию катализирует фосфоэтаноламинцитидинтрансфераза:

Активированный ЦДФ–этаноламин при участии фермента этаноламинфосфаттрансферазы вступает в реакцию с L–диацилглицеролом с образованием фосфатидиламина:

L-диацилглицерол образуется при гидролизе фосфатидной кислоты. Аналогичные реакции ведут к образованию ЦДФ-холина.; последний вступает в реакцию с L-диацилглицеролом, в результате чего образуется  фосфатидилхолин.

В синтезе фосфатидилэтаноламина и фосфатидилхолина важную роль играет ЦТФ. Подобно тому синтезу олиго- и полисахаридов, мы и здесь видим, каким образом нуклеотиды могут выполнять функцию переносчиков опреденных химических групп в обмене веществ клеток.

Помимо синтеза фосфолипидов таким способом, в клетке они легко подвергаются взаимопревращениям. Фосфатидилэтаноламин является предшественником фосфатидилхолина. Так, в печени в результате последовательного переноса трех метильных групп от трех молекул S-аденозилметионина образуется фосфатидилхолин:

В переносе метильных групп важную роль играют тетрогидрофолевая кислота (витамин Вс) и метилкобаломин ( витамин В12).

Синтез фосфатидилсерина происходит другим путем с предварительным вовлечением фосфатидной кислоты:

Затем происходит перенос серина на фосфатидильный остаток с образованием фосфатидилсерина:

У млекопитающих фосфатидилсерин образуется в реакции обмена этаноламина на серин следующим путем:

Таким же путем образуется фосфатидилинозитол.

В биосинтезе сфингомиелина принимает участие церамид (N-ацетилсфингозин), который образуется при взаимодействии спирта сфингозина и ацетил-КоА. Сфингомиелин синтезируется в результате взаимодействия церамида с ЦДФ-холином:

Все выше синтезированные фосфолипиды поступают с помощью липидпереносящих белков из цитоплазмы к мембранам и участвуют в их построении.

Другие работы

Составление бухгалтерского баланса бухгалтерс...


Дано: № П п Наименование хозяйственных средств и источников их формирования № Счета Сумма 1 Сырье и материалы 10 1180 2 Задолженность учредителям...

Подробнее ...

РЕФЕРАТ дисертації на здобуття наукового ступ...


4rdquo;465rdquo; Фізична реабілітація осіб другого зрілого віку після мозкового ішемічного інсульту 24. осіб в усьому світі з них: 700750 тис. Зр...

Подробнее ...

ПАКЕР УТВ


Печь для каталитической газовой цементации СШЦМ 8. просво габариты 1 Печь шахтная закалочная ПШЗ 10.15 12 2 150 380 1200 ?1000х1500 2335х2650х28...

Подробнее ...

.Теоретические основы системы национальных сч...


1 Анализ динамики ВВП за 2011?2013 гг [11] 3. Важнейшим из всех макроэкономических показателей является показатель валового внутреннего продукта ...

Подробнее ...